
RoBoIO 1.8 for JAVARoBoIO 1.8 for JAVA

Software Development Software Development

IntroductionIntroduction

DMP Electronics Inc.DMP Electronics Inc.

Robotics DivisionRobotics Division

June 2011June 2011

OverviewOverview

RoBoIO LibraryRoBoIO Library

 AA openopen--sourcesource library for RoBoard’s unique I/O functionslibrary for RoBoard’s unique I/O functions

 Free for academic & commercial useFree for academic & commercial use

 Supported I/O functionsSupported I/O functions

 PWM (PulsePWM (Pulse--Width Modulation)Width Modulation)

 A/D (AnalogA/D (Analog--toto--Digital Converter)Digital Converter)

 SPI (Serial Peripheral Interface)SPI (Serial Peripheral Interface)

 II22C (InterC (Inter--Integrated Circuit Interface)Integrated Circuit Interface)

 GPIO (GeneralGPIO (General--Purpose Digital I/O)Purpose Digital I/O)

 RC servo control (KONDO, HiTEC, …)RC servo control (KONDO, HiTEC, …)

ArchitectureArchitecture

Portable I/O libPortable I/O lib

(low level)

SPI lib

(high + low level)

SPI lib

(high + low level)

PWM libPWM lib

(low level)

A/D lib

(high level)

A/D lib

(high level)

RC Servo libRC Servo lib

(high level)

User Application

RoBoIO Library

I C lib

(high + low level)

I2C lib

(high + low level)

COM lib

(high + low level)

COM lib

(high + low level)

Usage OverviewUsage Overview

 Load Load RoBoIO_JavaRoBoIO_Java to use the to use the

RoBoIO libraryRoBoIO library

 All RoBoIO API are included in All RoBoIO API are included in

the the RoBoIORoBoIO class.class.

 Call Call roboio_SetRBVer(rb_ver)roboio_SetRBVer(rb_ver)

to set your RoBoard correctlyto set your RoBoard correctly

 select rb_ver = RB_100, RB_110,

RB_100RD or RB_050 according to

your RoBoard version

public class main
{

static
{

System.loadLibrary("RoBoIO_Java");
}

public static void main(String
argv[])

{
RoBoIO.roboio_SetRBVer(…);
……

// use API of RoBoIO

// library here

……
}

}

Usage OverviewUsage Overview

 Error reporting of Error reporting of RoBoIORoBoIO APIAPI

 When any API function fails, you can always callWhen any API function fails, you can always call

roboio_GetErrMsgroboio_GetErrMsg()()

to get the error message.to get the error message.

 ExampleExample

……

if (RoBoIO.rcservo_Init(…) == false) {

System.out.println(“Fail to initialize RC Servo lib!!!”);

System.out.println(RoBoIO.roboio_GetErrMsg());

return;

}

……

SPI libSPI lib

RoBoard H/W SPI Features & LimitsRoBoard H/W SPI Features & Limits

 Dedicated to SPI flashDedicated to SPI flash

 HalfHalf--DuplexDuplex

 Support only highSupport only high--speed devicesspeed devices

 Max: 150 MbpsMax: 150 Mbps

 Min: 10 MbpsMin: 10 Mbps

spi write

spi read

SPIDO

SPIDI

RoBoard H/W SPI Features & LimitsRoBoard H/W SPI Features & Limits

 Support only two clock modesSupport only two clock modes

 CPOL = 0, CPHA = 1 ModeCPOL = 0, CPHA = 1 Mode

 CPOL = 1, CPHA = 1 ModeCPOL = 1, CPHA = 1 Mode

 SeeSee http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bushttp://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus for for

more information about SPI clock modesmore information about SPI clock modes..

CPOL = 0

CPOL = 1

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

RoBoard H/W SPI Features & Limits

 Remarks

 On RB-110 & RB-050, the native SPI can only be

used internally to access the on-board A/D.

 If you need SPI interface on RB-110, use RB-110’s

FTDI General Serial Port (COM6).

 Refer to the application note: RB-110 SPI How-To for more

information.

Usage OverviewUsage Overview

 clock_modeclock_mode can be, e.g.,can be, e.g.,

 RoBoIO.RoBoIO.SPICLK_10000KHZSPICLK_10000KHZ (10 Mbps)(10 Mbps)

 RoBoIO.RoBoIO.SPICLK_12500KHZSPICLK_12500KHZ (12.5 Mbps)(12.5 Mbps)

 RoBoIO.RoBoIO.SPICLK_21400KHZSPICLK_21400KHZ (21.4 Mbps)(21.4 Mbps)

 RoBoIO.RoBoIO.SPICLK_150000KHZSPICLK_150000KHZ (150 Mbps)(150 Mbps)

 See the source of RoBoIO JAVA warper for all clock modes.See the source of RoBoIO JAVA warper for all clock modes.

if (RoBoIO.spi_Init(clock_mode)) {

……

int val = RoBoIO.spi_Read(); //read a byte from SPI bus

RoBoIO.spi_Write(0x55); //write a byte (0x55) to SPI bus

……

RoBoIO.spi_Close(); //close SPI lib

}

SPISPI--Write FunctionsWrite Functions

 Two different SPITwo different SPI--write functions:write functions:

 All data are written to SPI FIFO, and then transferred by All data are written to SPI FIFO, and then transferred by

Hardware.Hardware.

spi_Write() vs. spi_WriteFlush()

H/W SPI module

SPI FIFO
SPIDOspi_Write() or

spi_WriteFlush()

SPISPI--Write FunctionsWrite Functions

 Two different SPITwo different SPI--write functions: (cont.)write functions: (cont.)

 spi_Write()spi_Write() does not wait transfer completion.does not wait transfer completion.

 FasterFaster

 But must be careful about timing issueBut must be careful about timing issue

 Can callCan call spi_FIFOFlush()spi_FIFOFlush() to flush SPI FIFOto flush SPI FIFO

 spi_WriteFlush()spi_WriteFlush() waits that SPI FIFO becomes empty.waits that SPI FIFO becomes empty.

SPISSSPISS PinPin

 Control of theControl of the SPISSSPISS pin of RBpin of RB--100/100RD100/100RD

 spi_EnableSS()spi_EnableSS(): set : set SPISSSPISS to 0to 0

 spi_DisableSS()spi_DisableSS(): set : set SPISSSPISS to 1to 1

 SPISSSPISS is usually used for turning on/off SPI is usually used for turning on/off SPI

devicesdevices

 If need more than one If need more than one SPISSSPISS pin, simulate them pin, simulate them

using RoBoard’s GPIOusing RoBoard’s GPIO

 For GPIO, refer to the section of RC Servo lib.For GPIO, refer to the section of RC Servo lib.

SoftwareSoftware--Simulated SPISimulated SPI

 From v1.8, RoBoIO includes S/WFrom v1.8, RoBoIO includes S/W--simulated SPI simulated SPI

functions to support lowfunctions to support low--speed SPI devicesspeed SPI devices..

 Features of S/WFeatures of S/W--simulated SPIsimulated SPI

 Max Speed: ~160KbpsMax Speed: ~160Kbps

 FullFull--DuplexDuplex

 All SPI clock modes supportedAll SPI clock modes supported

 For an explanation of SPI clock modes, seeFor an explanation of SPI clock modes, see

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bushttp://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

write data

read data

SPIDO

SPIDI read data

write data

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

SoftwareSoftware--Simulated SPISimulated SPI

 Usage overviewUsage overview

if (RoBoIO.spi_InitSW(clock_mode, clock_delay)) {

……

// Half-Duplex read/write

int val1 = RoBoIO.spi_Read(); //read a byte from SPI bus

RoBoIO.spi_Write(0x55); //write a byte (0x55) to SPI bus

// Full-Duplex read/write

int val2 = RoBoIO.spi_Exchange(0xaa);

//write a byte (0xaa) & read a byte from

//SPI bus at the same time

……

RoBoIO.spi_CloseSW(); //close S/W-simulated SPI

}

SoftwareSoftware--Simulated SPISimulated SPI

 Usage overview (cont.)Usage overview (cont.)

 clock_modeclock_mode can becan be

 RoBoIO.RoBoIO.SPIMODE_CPOL0SPIMODE_CPOL0 + RoBoIO.+ RoBoIO.SPIMODE_CPHA0SPIMODE_CPHA0

 RoBoIO.RoBoIO.SPIMODE_CPOL0SPIMODE_CPOL0 + RoBoIO.+ RoBoIO.SPIMODE_CPHA1SPIMODE_CPHA1

 RoBoIO.RoBoIO.SPIMODE_CPOL1SPIMODE_CPOL1 + RoBoIO.+ RoBoIO.SPIMODE_CPHA0SPIMODE_CPHA0

 RoBoIO.RoBoIO.SPIMODE_CPOL1SPIMODE_CPOL1 + RoBoIO.+ RoBoIO.SPIMODE_CPHA1SPIMODE_CPHA1

 clock_delayclock_delay can be any unsigned integer to control can be any unsigned integer to control

S/WS/W--simulated SPI clock speed.simulated SPI clock speed.

 IfIf clock_delayclock_delay = 0, the clock speed is about 160Kbps.= 0, the clock speed is about 160Kbps.

A/D libA/D lib

RoBoard A/D FeaturesRoBoard A/D Features

 Employ ADI AD7918Employ ADI AD7918

 1010--bit resolution & 1M samples per secondbit resolution & 1M samples per second

 Share RoBoard’s SPI busShare RoBoard’s SPI bus

 When accessing A/D, signals appear onWhen accessing A/D, signals appear on SPICLKSPICLK, , SPIDOSPIDO, , SPIDI SPIDI

pins of RBpins of RB--100/100RD.100/100RD.

 So be careful aboutSo be careful about bus conflictbus conflict if you have devices attached to if you have devices attached to

SPI bus of RBSPI bus of RB--100/100RD.100/100RD.

 Disable your SPI devices (using, e.g.,Disable your SPI devices (using, e.g., SPISSSPISS pin of RBpin of RB--100/100RD) 100/100RD)

when accessing A/D.when accessing A/D.

Usage OverviewUsage Overview

 To use the 8To use the 8--channel A/D, we must initialize SPI lib first.channel A/D, we must initialize SPI lib first.

 SPI clock must SPI clock must  21.421.4 MbpsMbps

 Only provides the usual functions of AD7918Only provides the usual functions of AD7918

 Refer to AD7918 datasheet if you want to extend A/D lib.Refer to AD7918 datasheet if you want to extend A/D lib.

if (RoBoIO.spi_Init(RoBoIO.SPICLK_21400KHZ)) {

……

int val = RoBoIO.adc_ReadCH(channel); //channel = integer 0 ~ 7

……

RoBoIO.spi_Close();

}

Usage OverviewUsage Overview

 If need more detailed control, call If need more detailed control, call adc_ReadChanneladc_ReadChannel()()

instead:instead:

if (RoBoIO.spi_Init(RoBoIO.SPICLK_21400KHZ)) {

……

int val = RoBoIO.adc_ReadChannel(channel, //channel = 0 ~ 7

RoBoIO.ADCMODE_RANGE_2VREF,

RoBoIO.ADCMODE_UNSIGNEDCODING);

……

RoBoIO.spi_Close();

}

Usage OverviewUsage Overview

 InputInput--voltage range:voltage range:

 ADCMODE_RANGE_2VREFADCMODE_RANGE_2VREF: 0V ~ 5V: 0V ~ 5V

 allow higher voltageallow higher voltage

 ADCMODE_RANGE_VREFADCMODE_RANGE_VREF: : 00V ~ 2.5VV ~ 2.5V

 allow higher resolutionallow higher resolution

 A/D value range:A/D value range:

 ADCMODE_UNSIGNEDCODINGADCMODE_UNSIGNEDCODING: 0 ~ 1023: 0 ~ 1023

 ADCMODE_SIGNEDCODINGADCMODE_SIGNEDCODING: : 512512 ~ 511~ 511

 min value min value  lowest voltage, max value lowest voltage, max value  highesthighest voltagevoltage

 Remarks: Remarks: adc_ReadCHadc_ReadCH()() uses uses ADCMODE_RANGE_2VREFADCMODE_RANGE_2VREF and and

ADCMODE_UNSIGNEDCODINGADCMODE_UNSIGNEDCODING as default settings.as default settings.

Batch ModeBatch Mode

 adc_ReadChannel()adc_ReadChannel() is slower due to channelis slower due to channel--

addressing overhead.addressing overhead.

 In batch mode, multiple channels are read without In batch mode, multiple channels are read without

channelchannel--addressingaddressing better performancebetter performance

 adc_InitMCH()adc_InitMCH(): open batch mode: open batch mode

 adc_ReadMCH()adc_ReadMCH(): read user: read user--assigned channelsassigned channels

 adc_CloseMCH()adc_CloseMCH(): close batch mode: close batch mode

Batch ModeBatch Mode

int[] adc_data;

if (RoBoIO.adc_InitMCH(RoBoIO.ADC_USECHANNEL0 +

RoBoIO.ADC_USECHANNEL1 + ……,

RoBoIO.ADCMODE_RANGE_2VREF,

RoBoIO.ADCMODE_UNSIGNEDCODING)) {

……

adc_data = RoBoIO.adc_ReadMCH();

for (int i=0; i<8; i++)

System.out.println("A/D channel " + i + " = " + adc_data[i]);

……

RoBoIO.adc_CloseMCH();

}

 ParametersParameters RoBoIO.ADC_USECHANNEL0ADC_USECHANNEL0 ~ ~ RoBoIO.ADC_USECHANNEL7ADC_USECHANNEL7

 Indicate which A/D channels to read in batch modeIndicate which A/D channels to read in batch mode

II22C libC lib

(Simple API)(Simple API)

RoBoard H/W IRoBoard H/W I22C FeaturesC Features

 Support both master & slave modes Support both master & slave modes

 Support 10Support 10--bit address (master only)bit address (master only)

 but not implemented in RoBoIObut not implemented in RoBoIO

 Support all ISupport all I22C speed modesC speed modes

 standard mode (~100 Kbps)standard mode (~100 Kbps)

 fast mode (~400 Kbps)fast mode (~400 Kbps)

 must pullmust pull--upup I2C0_SCLI2C0_SCL,, I2C0_SDAI2C0_SDA pinspins

 highhigh--speed mode (~3.3 Mbps)speed mode (~3.3 Mbps)

 To achieve 3.3 Mbps, pullTo achieve 3.3 Mbps, pull--up resisters should up resisters should  1K ohm1K ohm

Usage Overview: Master ModeUsage Overview: Master Mode

 speed_modespeed_mode can becan be

 RoBoIO.RoBoIO.I2CMODE_STANDARDI2CMODE_STANDARD: standard mode: standard mode

 RoBoIO.RoBoIO.I2CMODE_FASTI2CMODE_FAST: fast mode: fast mode

 RoBoIO.RoBoIO.I2CMODE_HIGHSPEEDI2CMODE_HIGHSPEED: high: high--speed modespeed mode

 RoBoIO.RoBoIO.I2CMODE_AUTOI2CMODE_AUTO: automatically set speed mode according to: automatically set speed mode according to bpsbps

 bpsbps can be any integer can be any integer  3300000 (3.3 Mbps)3300000 (3.3 Mbps)

if (RoBoIO.i2c_Init(speed_mode, bps)) {

……

//use master API of I2C lib here

……

RoBoIO.i2c_Close(); //close I2C lib

}

 i2c_Send(i2c_Send(addraddr, , bufbuf, size), size): write a byte sequence : write a byte sequence

to Ito I22C deviceC device

 addraddr: the I: the I22C device addressC device address

 bufbuf: the Byte array to write: the Byte array to write

 sizesize: the number of bytes to write: the number of bytes to write

short[] buf = {0x11, 0x22, 0x33};

RoBoIO.i2c_Send(0x30, buf, 3); //write 3 bytes to an I2C device

//with address 0x30

Master APIMaster API

 i2c_Receive(i2c_Receive(addraddr, , bufbuf, size), size): read a byte : read a byte

sequence from Isequence from I22C deviceC device

 addraddr: the I: the I22C device addressC device address

 bufbuf: the Byte buffer to put read bytes: the Byte buffer to put read bytes

 sizesize: the number of bytes to read: the number of bytes to read

short[] buf = new short[3];

RoBoIO.i2c_Receive(0x30, buf, 3); //read 3 bytes from an I2C

//device with address 0x30

Master APIMaster API

 i2c_SensorRead(addr, cmd, buf, size)i2c_SensorRead(addr, cmd, buf, size): a general : a general

function used to read Ifunction used to read I22C sensor dataC sensor data

 Will first write Will first write cmdcmd to Ito I22C device, and then send IC device, and then send I22C C RESTARTRESTART

to read a byte sequence into to read a byte sequence into bufbuf

 addraddr: the I: the I22C device addressC device address

 cmdcmd: the byte to first write: the byte to first write

 Usually corresponds to a command of an IUsually corresponds to a command of an I22C sensorC sensor

 bufbuf: the Byte buffer to put read bytes: the Byte buffer to put read bytes

 sizesize: the number of bytes to read: the number of bytes to read

Master APIMaster API

 i2c_SensorReadEX(addr, cmd, csize, buf, size)i2c_SensorReadEX(addr, cmd, csize, buf, size): :

a general function used to read Ia general function used to read I22C sensor dataC sensor data

 Same as Same as i2c_SensorRead()i2c_SensorRead() except that except that cmdcmd is a byte array hereis a byte array here

 Used for the case where IUsed for the case where I22C sensor command is > 1 byteC sensor command is > 1 byte

 addraddr: the I: the I22C device addressC device address

 cmdcmd: the Byte array to first write: the Byte array to first write

 csizecsize: the number of bytes in : the number of bytes in cmdcmd

 bufbuf: the Byte buffer to put read bytes: the Byte buffer to put read bytes

 sizesize: the number of bytes to read: the number of bytes to read

Master APIMaster API

Master APIMaster API

short[] buf = new short[2];

// first write 0x02 to an I2C device with address 0x70
// and then restart to read 2 bytes back
RoBoIO.i2c_SensorRead(0x70, 0x02, buf, 2);

short[] cmd = {0x32, 0x33};

short[] buf = new short[6];

// first write 0x32 & 0x33 to an I2C device with address 0x53
// and then restart to read 6 bytes back
RoBoIO.i2c_SensorReadEX(0x53, cmd, 2, buf, 6);

Remarks on IRemarks on I22C Device AddressC Device Address

 Some vendors describes their devices’ address as the Some vendors describes their devices’ address as the

form:form:

 Ex.: the SRF08 ultrasonic sensor has addressEx.: the SRF08 ultrasonic sensor has address 0xE00xE0 (for read) (for read)

andand 0xE10xE1 (for write) by default.(for write) by default.

 The LSB of these addresses are actually the R/W bit.The LSB of these addresses are actually the R/W bit.

 When accessing such devices, you should put theWhen accessing such devices, you should put the 77--bit bit

slave addressslave address in RoBoIO Iin RoBoIO I22C API calls, rather than their C API calls, rather than their

device address.device address.

[7-bit slave address, R/W bit]

II22C ~ResetC ~Reset Pin of RBPin of RB--110/RB110/RB--050050

 Control of the Control of the ~Reset~Reset pin on Ipin on I22C connector of RBC connector of RB--

110/RB110/RB--050050

 i2c_SetResetPin()i2c_SetResetPin(): set : set ~Reset~Reset pin to output pin to output

HIGHHIGH

 i2c_ClearResetPin()i2c_ClearResetPin(): set : set ~Reset~Reset pin to output pin to output

LOWLOW

 By default, the BIOS will set By default, the BIOS will set ~Reset~Reset pin to HIGH pin to HIGH

when booting.when booting.

Software-Simulated I2C

 From v1.8, RoBoIO includes S/W-simulated I2C

functions to support non-standard I2C devices

(e.g., LEGO® NXT ultrasonic sensor).

 Support only I2C master mode

 Consider no I2C arbitration

 i.e., assume there is only one master on the I2C bus

 Output 3.3V as logic HIGH

 Should ensure your devices accept 3.3V as input

Software-Simulated I2C

 Usage overview

if (RoBoIO.i2c_InitSW(i2c_mode, clock_delay)) {

……

//you can use any master API here; e.g.,

short[] buf = {0x11, 0x22, 0x33};

RoBoIO.i2c_Send(0x53, buf, 3);

RoBoIO.i2c_SensorRead(0x53, 0x02, buf, 3);

……

RoBoIO.i2c_CloseSW(); //close S/W-simulated I2C

}

Software-Simulated I2C

 Usage overview (cont.)

 i2c_mode can be

 RoBoIO.I2CSW_NORMAL: simulate standard I2C protocol

 RoBoIO.I2CSW_LEGO: simulate LEGO® NXT I2C protocol

 clock_delay is any unsigned integer to control S/W-

simulated I2C clock speed.

 For LEGO® NXT sensors, the suggested clock_delay is 46

to achieve 9600bps.

 If clock_delay = 0, the clock speed is about 75Kbps.

II22C libC lib

(Advanced API)(Advanced API)

Advanced Master APIAdvanced Master API

 The most simple ones of all advanced IThe most simple ones of all advanced I22C Master APIC Master API

 i2c0master_StartN()i2c0master_StartN(): send : send STARTSTART signal to slave devicessignal to slave devices

 i2c0master_WriteN()i2c0master_WriteN(): write a byte to slave devices: write a byte to slave devices

 i2c0master_ReadN()i2c0master_ReadN(): read a byte from slave devices: read a byte from slave devices

 Automatically sendAutomatically send STOPSTOP signal after reading/writing the last bytesignal after reading/writing the last byte

RoBoIO.i2c0master_StartN(0x30, //slave address = 0x30

RoBoIO.I2C_WRITE, //perform write action (use I2C_READ

//instead for read action)

3); //3 bytes to write

RoBoIO.i2c0master_WriteN(0x11);

RoBoIO.i2c0master_WriteN(0x22);

RoBoIO.i2c0master_WriteN(0x33);

Advanced Master APIAdvanced Master API

 SendSend RESTARTRESTART instead ofinstead of STOPSTOP

 Call Call i2c0master_SetRestartN()i2c0master_SetRestartN() before the first reading/writingbefore the first reading/writing

 Then Then RESTARTRESTART signal, instead of signal, instead of STOPSTOP, will be sent after , will be sent after

reading/writing the last bytereading/writing the last byte

RoBoIO.i2c0master_StartN(0x30, RoBoIO.I2C_WRITE, 2);

//set to RESTART for reading 1 bytes (after I2C writes)

RoBoIO.i2c0master_SetRestartN(RoBoIO.I2C_READ, 1);

RoBoIO.i2c0master_WriteN(0x44);

RoBoIO.i2c0master_WriteN(0x55); //auto send RESTART after this

data = RoBoIO.i2c0master_ReadN(); //auto send STOP after this

Usage Overview: Slave ModeUsage Overview: Slave Mode

if (RoBoIO.i2c_Init(speed_mode, bps)) {

//set slave address (7-bit) as, e.g., 0x30

RoBoIO.i2c0slave_SetAddr(0x30);

……

//Slave Event Loop here

……

RoBoIO.i2c_Close(); //close I2C lib

}

 This mode allows you to simulate RoBoard as an IThis mode allows you to simulate RoBoard as an I22C slave device.C slave device.

 In Slave Event Loop, you should use Slave API (rather than In Slave Event Loop, you should use Slave API (rather than

Master API) to listen and handle IMaster API) to listen and handle I22C bus events.C bus events.

Slave Event LoopSlave Event Loop
while (……) {

switch (RoBoIO.i2c0slave_Listen()) {

case RoBoIO.I2CSLAVE_START: //receive START signal

//action for START signal

break;

case RoBoIO.I2CSLAVE_WRITEREQUEST: //request slave to write

//handle write request

break;

case RoBoIO.I2CSLAVE_READREQUEST: //request slave to read

//handle read request

break;

case RoBoIO.I2CSLAVE_END: //receive STOP signal

//action for STOP signal

break;
}

…… //can do stuff here when listening

}

Slave Read/Write APISlave Read/Write API

 Call Call i2c0slave_Write()i2c0slave_Write() for sending a byte to masterfor sending a byte to master

 CallCall i2c0slave_Read()i2c0slave_Read() for reading a byte from masterfor reading a byte from master

……
case RoBoIO.I2CSLAVE_WRITEREQUEST:

RoBoIO.i2c0slave_Write(byte_value);
break;

……

……
case RoBoIO.I2CSLAVE_READREQUEST:

data = RoBoIO.i2c0slave_Read();
break;

……

RC Servo libRC Servo lib
(with GPIO functions)(with GPIO functions)

FeaturesFeatures

 Dedicated to Dedicated to PWMPWM--based based RC servosRC servos

 Employ Employ RoBoard’sRoBoard’s PWM generatorPWM generator

 So don’t use RC Servo lib & PWM lib at the same timeSo don’t use RC Servo lib & PWM lib at the same time

 Can read the width of feedback pulsesCan read the width of feedback pulses

 Very accurate in DOS (Very accurate in DOS (1us1us))

 Occasionally miss accuracy in XP, CE, and Linux, when the OS Occasionally miss accuracy in XP, CE, and Linux, when the OS

is being overloadedis being overloaded

 Support GPIO (digital I/O) functionsSupport GPIO (digital I/O) functions

Usage OverviewUsage Overview

 ParametersParameters RoBoIO.RoBoIO.RCSERVO_USEPINS1RCSERVO_USEPINS1 ~~ RoBoIO.RoBoIO.RCSERVO_USEPINS24RCSERVO_USEPINS24

 Indicate which pins are used as Indicate which pins are used as Servo ModeServo Mode (for RB(for RB--110/ RB110/ RB--050, 050,

RoBoIO.RoBoIO.RCSERVO_USEPINS17RCSERVO_USEPINS17 ~ ~ RoBoIO.RoBoIO.RCSERVO_USEPINS24RCSERVO_USEPINS24 are invalid)are invalid)

 Other unused pins will be set as Other unused pins will be set as GPIO ModeGPIO Mode

……
//Configure servo setting (using Servo Configuration API) here
……
if (RoBoIO.rcservo_Init(RoBoIO.RCSERVO_USEPINS1 +

RoBoIO.RCSERVO_USEPINS2 + ……)) {

……
//use Servo Manipulation API here

……
RoBoIO.rcservo_Close();

}

Usage OverviewUsage Overview

 Servo Configuration API allows to configure various servo Servo Configuration API allows to configure various servo

parameters.parameters.

 PWM period, max/min PWM dutyPWM period, max/min PWM duty

 Feedback timings for position captureFeedback timings for position capture

 …………

 ServoServo--mode pins allow three servo manipulation modes.mode pins allow three servo manipulation modes.

 Capture mode (for reading RC servo’s position feedback)Capture mode (for reading RC servo’s position feedback)

 Action playing mode (for playing userAction playing mode (for playing user--defined motions)defined motions)

 PWM mode (send PWM pulses for individual channels)PWM mode (send PWM pulses for individual channels)

Configure Servo SettingConfigure Servo Setting

 Method 1:Method 1: Use builtUse built--in parameters by callingin parameters by calling

 pinpin = = RoBoIO.RoBoIO.RCSERVO_PINS1RCSERVO_PINS1 ~ ~ RoBoIO.RoBoIO.RCSERVO_PINS24RCSERVO_PINS24, ,

indicating which pin to set.indicating which pin to set.

 For RBFor RB--110/RB110/RB--050, 050, RoBoIO.RoBoIO.RCSERVO_PINS17RCSERVO_PINS17 ~ ~

RoBoIO.RoBoIO.RCSERVO_PINS24RCSERVO_PINS24 are invalid.are invalid.

rcservo_SetServo(pin, servo_model)

Configure Servo SettingConfigure Servo Setting

 Method 1:Method 1: (cont.)(cont.)

 servo_modelservo_model can be (cont.)can be (cont.)

 RoBoIO.RoBoIO.RCSERVO_KONDO_KRS78XRCSERVO_KONDO_KRS78X: : for KONDO KRSfor KONDO KRS--786/788 786/788

servosservos

 RoBoIO.RoBoIO.RCSERVO_KONDO_KRS4024RCSERVO_KONDO_KRS4024: for KONDO KRS: for KONDO KRS--4024 servos4024 servos

 RoBoIO.RoBoIO.RCSERVO_KONDO_KRS4014RCSERVO_KONDO_KRS4014: for KONDO KRS: for KONDO KRS--4014 servos4014 servos

 KRS4014 doesn’t directly work on RBKRS4014 doesn’t directly work on RB--100/RB100/RB--110; see later slides for 110; see later slides for

remarks.remarks.

 RoBoIO.RoBoIO.RCSERVO_HITEC_HSR8498RCSERVO_HITEC_HSR8498: for HiTEC HSR: for HiTEC HSR--8498 servos8498 servos

Configure Servo SettingConfigure Servo Setting

 Method 1:Method 1: (cont.)(cont.)

 servo_modelservo_model can be (cont.)can be (cont.)

 RoBoIO.RoBoIO.RCSERVO_FUTABA_S3003RCSERVO_FUTABA_S3003: for Futaba S3003 servos: for Futaba S3003 servos

 RoBoIO.RoBoIO.RCSERVO_SHAYYE_SYS214050RCSERVO_SHAYYE_SYS214050: for Shayang Ye : for Shayang Ye

SYSSYS--214050 servos214050 servos

 RoBoIO.RoBoIO.RCSERVO_TOWERPRO_MG995RCSERVO_TOWERPRO_MG995, ,

RoBoIO.RoBoIO.RCSERVO_TOWERPRO_MG996RCSERVO_TOWERPRO_MG996: for TowerPro : for TowerPro

MG995/MG996 servosMG995/MG996 servos

Configure Servo Setting

 Method 1: (cont.)

 servo_model can be (cont.)

 RoBoIO.RoBoIO.RCSERVO_GWS_S03T, RoBoIO.RoBoIO. RCSERVO_GWS_S777:

for GWS S03T & S777 series servos

 RoBoIO.RoBoIO.RCSERVO_GWS_MICRO: for GWS MICRO series

servos

 RoBoIO.RoBoIO.RCSERVO_DMP_RS0263,

RoBoIO.RoBoIO.RCSERVO_DMP_RS1270: for DMP RS-0263 & RS-

1270 servos

Configure Servo SettingConfigure Servo Setting

 Method 1:Method 1: (cont.)(cont.)

 servo_modelservo_model can be (cont.)can be (cont.)

 RoBoIO.RoBoIO.RCSERVO_SERVO_DEFAULTRCSERVO_SERVO_DEFAULT: attempt to adapt to : attempt to adapt to

various servos of supporting position feedbackvarious servos of supporting position feedback

 RoBoIO.RoBoIO.RCSERVO_SERVO_DEFAULT_NOFBRCSERVO_SERVO_DEFAULT_NOFB: similar to the : similar to the

above option, but dedicated to servos with no feedbackabove option, but dedicated to servos with no feedback

 Default option if you don’t configure the servo before callingDefault option if you don’t configure the servo before calling

rcservo_Init()rcservo_Init()

 If you don’t know which model your servos match, use If you don’t know which model your servos match, use

RoBoIO.RoBoIO.RCSERVO_SERVO_DEFAULT_NOFBRCSERVO_SERVO_DEFAULT_NOFB

//PWM pin S1 connects KONDO servo KRS-786/788

RoBoIO.rcservo_SetServo(RoBoIO.RCSERVO_PINS1, RoBoIO.RCSERVO_KONDO_KRS78X);

//PWM pin S3 connects DMP servo RS-0263

RoBoIO.rcservo_SetServo(RoBoIO.RCSERVO_PINS3, RoBoIO.RCSERVO_DMP_RS0263RCSERVO_DMP_RS0263);

//open RC Servo lib to control servos on pins S1 & S3
if (RoBoIO.rcservo_Init(RoBoIO.RCSERVO_USEPINS1 + RoBoIO.RCSERVO_USEPINS3))
{

……
//use Servo Manipulation API here
……
RoBoIO.rcservo_Close();

}

Configure Servo SettingConfigure Servo Setting

Configure Servo SettingConfigure Servo Setting

 Method 2:Method 2: Call parameterCall parameter--setting functions to set setting functions to set

customized parameterscustomized parameters

 In theory, using this method, we can adapt RC Servo lib In theory, using this method, we can adapt RC Servo lib

to any PWMto any PWM--based RC servos.based RC servos.

 It requires detailed servo knowledge, and we will It requires detailed servo knowledge, and we will

provide a document for this in the future.provide a document for this in the future.

Manipulate Servo: Capture ModeManipulate Servo: Capture Mode

 Call Call rcservo_EnterCaptureModercservo_EnterCaptureMode()() to enter this modeto enter this mode

 Capture mode is the initial mode of servoCapture mode is the initial mode of servo--mode pins after callingmode pins after calling

rcservo_Initrcservo_Init()()

 Note: Servos with no feedback are not supported in this modeNote: Servos with no feedback are not supported in this mode..

 Available API in Capture modeAvailable API in Capture mode

 rcservo_CapOnercservo_CapOne(pin)(pin): read position feedback from a specified : read position feedback from a specified

servoservo--mode pinmode pin

 return return 0xffffffff0xffffffff if fails to read feedback, or if the pin is connected if fails to read feedback, or if the pin is connected

to a servo with no feedbackto a servo with no feedback

Manipulate Servo: Capture ModeManipulate Servo: Capture Mode

 Available API in Capture mode (cont.)Available API in Capture mode (cont.)

 rcservo_CapAll(frame)rcservo_CapAll(frame): read position feedback from : read position feedback from

all servoall servo--mode pinsmode pins

 frameframe is an array of 32 long integers, where is an array of 32 long integers, where frame[0]frame[0] will will

give position feedback on pin S1; give position feedback on pin S1; frame[1]frame[1] on pin S2; on pin S2;

and …and …

 frame[i]frame[i] will give will give 0xffffffff 0xffffffff if fails to read feedback if fails to read feedback

on the corresponding pin, or if the servo is with no on the corresponding pin, or if the servo is with no

feedbackfeedback

 for RBfor RB--100/100RD,100/100RD, frame[24~31]frame[24~31] are reserved; for RBare reserved; for RB--

110/RB110/RB--050, 050, frame[16~31]frame[16~31] are reserved.are reserved.

Manipulate Servo: Capture ModeManipulate Servo: Capture Mode

RoBoIO.rcservo_EnterCaptureMode();

……

//read position feedback from PWM pin S3

long pos = RoBoIO.rcservo_CapOne(RoBoIO.RCSERVO_PINS3);

……

//read position feedback from all servo-mode pins

long[] motion_frame = new long[32];

RoBoIO.rcservo_CapAll(motion_frame);

System.out.println(“position feedback on PWM pin S3 is

equal to ” + motion_frame[2] + “ microsecond”,);

Manipulate Servo: Capture ModeManipulate Servo: Capture Mode

 Available API in Capture mode (cont.)Available API in Capture mode (cont.)

 rcservo_ReadPositionsrcservo_ReadPositions()(): read position feedback : read position feedback

from multiple specified Servofrom multiple specified Servo--Mode pinsMode pins

//read position feedback from PWM pins S1 and S3

long[] motion_frame = new long[32];

RoBoIO.rcservo_ReadPositions(RoBoIO.RCSERVO_USEPINS1 +

RoBoIO.RCSERVO_USEPINS3,

0, //normally = 0

motion_frame);

System.out.println(“position feedback on PWM pins S1 and S3 are
equal to ” + motion_frame[0] + “ and ” +
motion_frame[2] + “ microsecond”);

Manipulate Servo: Manipulate Servo:

Action Playing ModeAction Playing Mode

 Can replay the motion frames that are captured byCan replay the motion frames that are captured by

rcservo_CapAll()rcservo_CapAll()

 Methods to enter this modeMethods to enter this mode

 rcservo_EnterPlayMode()rcservo_EnterPlayMode(): for servos with feedback: for servos with feedback

 Will automatically capture the current pose as the initial motion Will automatically capture the current pose as the initial motion

frame (home position)frame (home position)

 Will reject moving servos that have no feedbackWill reject moving servos that have no feedback

 rcservo_EnterPlayMode_HOME(home)rcservo_EnterPlayMode_HOME(home): for servos with no : for servos with no

feedbackfeedback

 homehome is an array of 32 long integers which indicates the initial is an array of 32 long integers which indicates the initial

motion frame.motion frame.

Manipulate Servo: Manipulate Servo:

Action Playing ModeAction Playing Mode

 Entering Playing Mode, all servoEntering Playing Mode, all servo--mode pins will send mode pins will send

PWM pulses continuously.PWM pulses continuously.

 In general, this will make all connected servos powered In general, this will make all connected servos powered

always.always.

 To stop the pulses, just leave Playing Mode by, e.g., To stop the pulses, just leave Playing Mode by, e.g.,

calling calling rcservo_EnterCaptureModercservo_EnterCaptureMode()()

Manipulate Servo: Manipulate Servo:

Action Playing ModeAction Playing Mode

 Blocking API in Action playing modeBlocking API in Action playing mode

 rcservo_MoveOnercservo_MoveOne(pin, pos, time)(pin, pos, time): move a servo : move a servo

until it reach the target positionuntil it reach the target position

 rcservo_MoveTorcservo_MoveTo(frame, time)(frame, time): move all servos : move all servos

until they reach to the next motion frameuntil they reach to the next motion frame

 frame[0]frame[0] indicates target position for servo on pin S1; indicates target position for servo on pin S1;

frame[1]frame[1] for pin S2; and …for pin S2; and …

 frame[frame[ii] = 0] = 0 indicates the corresponding servo to remain indicates the corresponding servo to remain

at its position.at its position.

Manipulate Servo: Manipulate Servo:

Action Playing ModeAction Playing Mode

RoBoIO.rcservo_EnterPlayMode();
……
//move servo on PWM pin S2 to position 1500us in 500ms
RoBoIO.rcservo_MoveOne(RoBoIO.RCSERVO_PINS2, 1500, 500);

RoBoIO.rcservo_EnterPlayMode();
……
//move simultaneously both servos on PWM pins S1 and S3 to
//position 1500us in 500ms

long[] motion_frame = new long[32];
for (int i=0; i<32; i++) motion_frame[i] = 0;

motion_frame[0] = 1500;
motion_frame[2] = 1500;
RoBoIO.rcservo_MoveTo(motion_frame, 500);

Manipulate Servo: Manipulate Servo:

Action Playing ModeAction Playing Mode

 NonNon--blocking API in Action playing modeblocking API in Action playing mode

 rcservo_SetAction(frame, time)rcservo_SetAction(frame, time): set the next : set the next

motion framemotion frame

 Can be called, before the following function returns Can be called, before the following function returns

RoBoIO.RoBoIO.RCSERVO_PLAYENDRCSERVO_PLAYEND, to change the target positions, to change the target positions

 rcservo_PlayAction()rcservo_PlayAction(): push all servos to reach : push all servos to reach

the frame that was set by the frame that was set by rcservo_SetAction()rcservo_SetAction()

 Must call Must call rcservo_PlayAction()rcservo_PlayAction() repeatedly until it repeatedly until it

returnsreturns RoBoIO.RoBoIO.RCSERVO_PLAYENDRCSERVO_PLAYEND (which indicates that all (which indicates that all

servos have reached the target)servos have reached the target)

Manipulate Servo: Manipulate Servo:

Action Playing ModeAction Playing Mode

RoBoIO.rcservo_EnterPlayMode();

……
long[] motion_frame = new long[32];
for (int i=0; i<32; i++) motion_frame[i] = 0;

//here set up the content of motion_frame[] for playing

……

RoBoIO.rcservo_SetAction(motion_frame, 500);

//play motion in 500ms

while (RoBoIO.rcservo_PlayAction() != RoBoIO.RCSERVO_PLAYEND)

{

//

//can do stuff here when playing motion

//

}

Manipulate Servo: Manipulate Servo:

Action Playing ModeAction Playing Mode

 NonNon--blocking API (cont.)blocking API (cont.)

 rcservo_StopAction()rcservo_StopAction(): stop playing the motion : stop playing the motion

frame immediatelyframe immediately

 rcservo_PlayAction()rcservo_PlayAction() will return will return

RoBoIO.RoBoIO.RCSERVO_PLAYENDRCSERVO_PLAYEND after calling thisafter calling this

 rcservo_GetAction(buf)rcservo_GetAction(buf): get the current : get the current

positions of all servospositions of all servos

 buf[0]buf[0] will give the position of servo on pin S1; will give the position of servo on pin S1; buf[1]buf[1] on on

pin S2; and …pin S2; and …

Manipulate Servo: Manipulate Servo:

Action Playing ModeAction Playing Mode

RoBoIO.rcservo_EnterPlayMode();

……
long[] buf = new long[32];
long[] motion_frame = new long[32];
for (int i=0; i<32; i++) motion_frame[i] = 0;

//here set up the content of motion_frame[] for playing

……

RoBoIO.rcservo_SetAction(motion_frame, 500);

//play motion in 500ms

while (RoBoIO.rcservo_PlayAction() != RoBoIO.RCSERVO_PLAYEND)

{

RoBoIO.rcservo_GetAction(buf);

System.out.println(“Servo on pin S1 is moving to” + buf[0]);

}

Manipulate Servo: PWM ModeManipulate Servo: PWM Mode

 CallCall rcservo_EnterPWMMode()rcservo_EnterPWMMode() to enter this modeto enter this mode

 In this mode, all servoIn this mode, all servo--mode pins output 0V if no pulse mode pins output 0V if no pulse

is sent.is sent.

 Available API in PWM modeAvailable API in PWM mode

 rcservo_SendPWM()rcservo_SendPWM(): send a given number of pulses : send a given number of pulses

with specific duty and periodwith specific duty and period

 rcservo_IsPWMCompleted()rcservo_IsPWMCompleted(): return true when all : return true when all

pulses have been sent outpulses have been sent out

Manipulate Servo: PWM ModeManipulate Servo: PWM Mode

RoBoIO.rcservo_EnterPWMMode();

……

long PWM_period = 10000; //10000us

long PWM_duty = 1500; //1500us

long count = 100;

RoBoIO.rcservo_SendPWM(pin,// RoBoIO.RCSERVO_PINS1 or ……

PWM_period, PWM_duty, count);

while (! RoBoIO.rcservo_IsPWMCompleted(pin)) {

//

//can do stuff here when waiting for PWM completed

//

}

Manipulate Servo: PWM ModeManipulate Servo: PWM Mode

 Available API in PWM mode (cont.)Available API in PWM mode (cont.)

 rcservo_SendCPWM()rcservo_SendCPWM(): send continuous pulses with : send continuous pulses with

specific duty and periodspecific duty and period

 rcservo_StopPWM()rcservo_StopPWM(): stop the pulses caused by : stop the pulses caused by

rcservo_SendPWM()rcservo_SendPWM()//rcservo_SendCPWM()rcservo_SendCPWM()

 rcservo_CheckPWM()rcservo_CheckPWM(): return the remaining number of : return the remaining number of

pulses to sendpulses to send

 return return 00 if pulses have stoppedif pulses have stopped

 return return 0xffffffff0xffffffff for continuous pulsesfor continuous pulses

Manipulate Servo: PWM ModeManipulate Servo: PWM Mode

RoBoIO.rcservo_EnterPWMMode();

……

long PWM_period = 10000; //10000us

long PWM_duty = 1500; //1500us

RoBoIO.rcservo_SendCPWM(pin, //RoBoIO.RCSERVO_PINS1 or ……

PWM_period, PWM_duty);

……

//do something when sending PWM

……

RoBoIO.rcservo_StopPWM(pin);

GPIO FunctionsGPIO Functions

 API to control GPIOAPI to control GPIO--mode pinsmode pins

 rcservo_OutPin(pin, value)rcservo_OutPin(pin, value): set GPIO: set GPIO--mode pin to mode pin to

output HIGH or LOWoutput HIGH or LOW

 pinpin = = RoBoIO.RoBoIO.RCSERVO_PINS1RCSERVO_PINS1 or or RoBoIO.RoBoIO.RCSERVO_PINS2RCSERVO_PINS2

or ……or ……

 valuevalue = = 00 (output LOW) or (output LOW) or 11 (output HIGH)(output HIGH)

 rcservo_InPin(pin)rcservo_InPin(pin): read input from GPIO pin: read input from GPIO pin

 Return Return 00 if it read LOW, and if it read LOW, and 11 if it read HIGHif it read HIGH

 The API will do nothing if The API will do nothing if pinpin is a servois a servo--mode pin.mode pin.

BIOS Setting for RC ServosBIOS Setting for RC Servos

 Some RC servos (e.g., KONDO KRSSome RC servos (e.g., KONDO KRS--788) require 788) require

the PWM input signal = LOW at power on.the PWM input signal = LOW at power on.

 Configure Configure RoBoard’sRoBoard’s PWM pins to achieve thisPWM pins to achieve this

 STEP 1: Switch theSTEP 1: Switch the pullpull--up/pullup/pull--down switchdown switch to “pullto “pull--

down”down”

 STEP 2: Go to BIOS ChipsetSTEP 2: Go to BIOS Chipset menumenu

 STEP 3: SelectSTEP 3: Select SouthBridgeSouthBridge Configuration Configuration 

MultiMulti--Function Port ConfigurationFunction Port Configuration

BIOS Setting for RC ServosBIOS Setting for RC Servos

 Configure RoBoard’s PWM pins (cont.)Configure RoBoard’s PWM pins (cont.)

 STEP 4: SetSTEP 4: Set Port0 Bit0~7Port0 Bit0~7, , Port1 Bit0~7Port1 Bit0~7, , Port2 Port2

Bit0~7(only for RBBit0~7(only for RB--100/100RD)100/100RD), , Port3 Bit6Port3 Bit6 as as Output [0]Output [0]

 Can also set RoBoard’s PWM pins = HIGH at power onCan also set RoBoard’s PWM pins = HIGH at power on

 Just switch theJust switch the pullpull--up/pullup/pull--down switchdown switch to “pullto “pull--up”up”

Remarks for KONDO KRSRemarks for KONDO KRS--40144014

 KRSKRS--4014 servos also require PWM = LOW at 4014 servos also require PWM = LOW at

power on.power on.

 But the former pullBut the former pull--up/up/--down setting is not enough to down setting is not enough to

make KRSmake KRS--4014 work on RB4014 work on RB--100/RB100/RB--110.110.

 You also need to power on KRSYou also need to power on KRS--4014 and RB4014 and RB--100/RB100/RB--110 110

at different time.at different time.

 This implies that you need to powerThis implies that you need to power--supply the both supply the both

separately.separately.

Remarks for KONDO KRSRemarks for KONDO KRS--40144014

 Example: Make KRSExample: Make KRS--4014 work on RB4014 work on RB--110.110.

 STEP 1: turn on the systemSTEP 1: turn on the system

power of RoBoard firstpower of RoBoard first

 STEP 2: wait the BIOS STEP 2: wait the BIOS

screen appearedscreen appeared

 STEP 3: turn on the servoSTEP 3: turn on the servo

power for KRSpower for KRS--40144014

COM PortsCOM Ports

RoBoard Native COM PortsRoBoard Native COM Ports

 COM1~COM4 can be used as standard COM ports in COM1~COM4 can be used as standard COM ports in

WinXP, Linux, and DOSWinXP, Linux, and DOS

 Max speedMax speed

 RBRB--100: 100: 115200115200 bpsbps

 RBRB--100RD/RB100RD/RB--110/RB110/RB--050: 050: 748800 748800 bpsbps

 Can customize each native COM port in BIOSCan customize each native COM port in BIOS

 IRQIRQ

 I/O base addressI/O base address

 Default speedDefault speed

Boosting Mode of RBBoosting Mode of RB--100RD/110/050 100RD/110/050

Native COM PortsNative COM Ports

 RBRB--100RD/RB100RD/RB--110/RB110/RB--050’s native COM ports support 050’s native COM ports support

baudrates up to 750K bps, provided that COM boosting baudrates up to 750K bps, provided that COM boosting

mode is enabled.mode is enabled.

 When boosting mode enabled,When boosting mode enabled,

 For example, if boosting mode of COM3 is enabled and its For example, if boosting mode of COM3 is enabled and its

baudrate is set to 38400 bps, the real baudrate is 38400 baudrate is set to 38400 bps, the real baudrate is 38400  13 = 13 =

500K bps.500K bps.

 In boosting mode, the maximum baudrate is 57600 In boosting mode, the maximum baudrate is 57600  13 = 13 =

750Kbps (115200 750Kbps (115200  13 is not allowed)13 is not allowed)

the real baudrate = 13  the original baudrate

How to Enable Boosting Mode of RBHow to Enable Boosting Mode of RB--

100RD/110/050 Native COM Ports100RD/110/050 Native COM Ports

 Method 1:Method 1: Using BIOSUsing BIOS

 STEP 1: Go to RBSTEP 1: Go to RB--100RD/RB100RD/RB--110/RB110/RB--050 BIOS 050 BIOS ChipsetChipset menumenu

 STEP 2: Select STEP 2: Select SouthBridge ConfigurationSouthBridge Configuration → →

Serial/Parallel Port ConfigurationSerial/Parallel Port Configuration

 STEP 3: Select the COM portSTEP 3: Select the COM port

that you want to boostthat you want to boost

 STEP 4: Set its baudrate to STEP 4: Set its baudrate to

any speed any speed  115200 bps115200 bps

How to Enable Boosting Mode of RBHow to Enable Boosting Mode of RB--

100RD/110/050 Native COM Ports100RD/110/050 Native COM Ports

 Method 2:Method 2: Using Using rbcom.exerbcom.exe in RoBoKit.in RoBoKit.

 Run Run rbcom.exerbcom.exe directly to see its usagedirectly to see its usage

 Method 3:Method 3: Using the isolated API of COM lib(refer to Using the isolated API of COM lib(refer to

the later COM lib slides)the later COM lib slides)

RoBoIO.io_init();

……

RoBoIO.com2_EnableTurboMode(); //enable boosting mode of COM2

……

RoBoIO.com4_DisableTurboMode(); //disable boosting mode of COM4

……

RoBoIO.io_close();

RBRB--110 FTDI COM Ports110 FTDI COM Ports

 COM5 & COM6 of RBCOM5 & COM6 of RB--110 are realized by its on110 are realized by its on--

board FTDI FT2232H chip.board FTDI FT2232H chip.

 So require to install dedicated drivers for their usageSo require to install dedicated drivers for their usage

 See also See also RBRB--110 WinXP/Linux installation guide110 WinXP/Linux installation guide for more for more

information.information.

 Detailed application notes for FTDI FT2232H can be Detailed application notes for FTDI FT2232H can be

found on FTDI’s web site:found on FTDI’s web site:

http://www.ftdichip.com/Support/FTDocuments.htmhttp://www.ftdichip.com/Support/FTDocuments.htm

FTDI COM vs. Native COM

 FTDI COM allows faster baudrates than RoBoard’s

native COM.

 But FTDI COM has also much longer latency

between two packet transmission.

 In transmitting multiple packets, FTDI COM may be

slower than native COM due to its latency.

 You should experiment to see which COM meets

your application.

COM lib

Usage Overview

 From RoBoIO 1.8, we add COM lib to

 make users easier to handle H/W features (e.g., boosting mode)

of RoBoard’s native COM ports

 provide a simple and unified serial API for various OS

 Currently only support WinXP, WinCE, Linux

 Note that COM lib only tackles RoBoard’s native

COM, i.e., COM1~COM4.

 So RB-110’s COM5 & COM6 aren’t considered.

Usage Overview

 The API has different prefixes for different COM

ports.

 RoBoIO.com1_... for COM1

 RoBoIO.com2_... for COM2

 RoBoIO.com3_... for COM3

 RoBoIO.com4_... for COM4

 Following slides shall only mention COM3 API for

illustration.

Usage Overview

 mode can be

 RoBoIO.COM_FDUPLEX: this port is used as a full-duplex COM (invalid for COM2 and RB-

100/100RD’s COM4)

 RoBoIO.COM_HDUPLEX: this port is used as a half-duplex COM (invalid for COM1)

 Select this if you short the TX/RX lines of COM3

if (RoBoIO.com3_Init(mode)) {

RoBoIO.com3_SetBaud(……); //optional

RoBoIO.com3_SetFormat(……); //optional

……
//use COM lib API here

……
RoBoIO.com3_Close();

}

 com3_SetBaud(baudrate): set the baudrate; baudrate

can be

 RoBoIO.COMBAUD_748800BPS: 750Kbps (invalid for RB-100)

 RoBoIO.COMBAUD_499200BPS: 500Kbps (invalid for RB-100)

 RoBoIO.COMBAUD_115200BPS: 115200bps

 RoBoIO.COMBAUD_9600BPS: 9600bps

 …… (See the warper source for all available baudrates)

 The default baudrate is 115200bps when calling

COM3_Init().

Baudrate

 com3_SetFormat(bytesize, stopbit, parity): set

the data format

 bytesize can be

 RoBoIO.COM_BYTESIZE5: byte size = 5 bits

 RoBoIO.COM_BYTESIZE6: byte size = 6 bits

 RoBoIO.COM_BYTESIZE7: byte size = 7 bits

 RoBoIO.COM_BYTESIZE8: byte size = 8 bits

 stopbit can be

 RoBoIO.COM_STOPBIT1: 1 stop bit

 RoBoIO.COM_STOPBIT2: 2 stop bit

Data Format

 com3_SetFormat(…): (cont.)

 parity can be

 RoBoIO.COM_NOPARITY: no parity bit

 RoBoIO.COM_ODDPARITY: odd parity

 RoBoIO.COM_EVENPARITY: even parity

 The default data format is 8-bit data, 1 stop bit, no

parity when calling com3_Init().

Data Format

 com3_Write(byte): write a byte to COM3

 com3_Send(buf, size): write a byte sequence to

COM3

 buf: the byte array to write

 size: the number of bytes to write

short[] buf = {0x11, 0x22, 0x33};

RoBoIO.com3_Send(buf, 3); //write 3 bytes to COM3

Write API

RoBoIO.com3_Write(0x55); //write 0x55 to COM3

 com3_ClearWFIFO(): cancel all bytes in write-FIFO

 com3_FlushWFIFO(): wait until all bytes in write-FIFO

are sent out

short[] buf = {0xff, 0x01, 0x02, 0x01};

RoBoIO.com3_Send(buf, 4); //write 4 bytes to COM3

RoBoIO.com3_FlushWFIFO(); //wait until these bytes are

//sent out

Write API

 com3_Read(): read a byte from COM3

 return 0xffff if timeout

 com3_Receive(buf, size): read a byte sequence

from COM3

 buf: the byte buffer to put read bytes

 size: the number of bytes to read

short[] buf = new short[3];

RoBoIO.com3_Receive(buf, 3); //read 3 bytes from COM3

Read API

int data = RoBoIO.com3_Read();

 com3_ClearRFIFO(): discard all bytes in read-FIFO

 com3_QueryRFIFO(): query the number of bytes in

read-FIFO

short[] buf = new short[4];

while (RoBoIO.com3_QueryRFIFO() < 4); //wait until there are

//4 bytes in read-FIFO

RoBoIO.com3_Receive(buf, 4); //read the 4 bytes from

//read-FIFO

Read API

 com3_ServoTRX(cmd, csize, buf, size): send

servo command to and then read feedback data from

COM3

 cmd: the byte array to send first

 csize: the number of bytes in cmd

 buf: the byte buffer to put read bytes

 size: the number of bytes to read

Special API for AI Servos

Special API for AI Servos

short[] cmd[6] = {0xff, 0xff, 0x01, 0x02, 0x01, 0xfb};
Short[] buf[6] = new short[6];

// ping Dynamixel AX-12 servo of ID 0x01
RoBoIO.com3_ServoTRX(cmd, 6, buf, 6);

System.out.print(“The feedback of AX-12 is ”);

for (int i = 0; i < 6; i++)

System.out.print(buf[i] + “ “);

System.out.println();

Isolated API

 There are isolated API that can work without

com3_Init() & com3_Close()

 com3_EnableTurboMode(): enable COM3’s boosting

mode (invalid for RB-100)

 com3_DisableTurboMode(): disable COM3’s boosting

mode (invalid for RB-100)

 Isolated API are usually used with external serial-

port libraries.

 Usage 1: (without RoBoIO.com3_Init() & RoBoIO.com3_Close())

 will reserve the change made by isolated API even when the program

exit

 Note that except isolated API, you shouldn’t mix COM lib with other

serial lib (i.e., after you call com3_Init(), don’t use other serial lib to

access COM3).

Isolated API

RoBoIO.io_init(…);

……

RoBoIO.com3_EnableTurboMode(); //set COM3 into boosting mode

……

RoBoIO.io_close(); //the boosting-mode setting would

//be reserved

 Usage 2: (with RoBoIO.com3_Init() & RoBoIO.com3_Close())

 will restore the change made by the isolated API

 This is not the recommended usage of isolated API.

Isolated API

RoBoIO.com3_Init(…);

……

RoBoIO.com3_EnableTurboMode(); //set COM3 into boosting mode

……

RoBoIO.com3_Close(); //will restore COM3’s original

//boosting-mode setting after this

InstallationInstallation
(for JAVA)(for JAVA)

Setup RoBoIO JAVA WarperSetup RoBoIO JAVA Warper

 Decompose RoBoIO JAVA Warper zipDecompose RoBoIO JAVA Warper zip--file to, e.g.,file to, e.g.,

C:C:\\RoBoard_JavaRoBoard_Java

 binbin:: sample codes and binaries for RoBoIO JAVA sample codes and binaries for RoBoIO JAVA

WarperWarper

 srcsrc:: source code of RoBoIO JAVA Warpersource code of RoBoIO JAVA Warper

Setup RoBoIO JAVA WarperSetup RoBoIO JAVA Warper

 Copy all files in Copy all files in binbin\\LibLib to your JAVA code directory.to your JAVA code directory.

files in bin\Lib

Your JAVA code
directory

Compile RoBoIO JAVA Compile RoBoIO JAVA

ApplicationsApplications

 Open a MSOpen a MS--DOS PromptDOS Prompt

 Click Click Start Menu Start Menu  Click Click RunRun  Type Type cmdcmd

Compile RoBoIO JAVA Compile RoBoIO JAVA

ApplicationsApplications

 Change the directory to your JAVA code directoryChange the directory to your JAVA code directory

 In the following example, the directory isIn the following example, the directory is c:c:\\javajava..

 Then type Then type javac javac ––classpath ./ ./”java file”classpath ./ ./”java file” to to

compile your JAVA codecompile your JAVA code

 In the following example,In the following example, ad7918.javaad7918.java is the java file.is the java file.

Compile RoBoIO JAVA Compile RoBoIO JAVA

ApplicationsApplications

 Type Type java java ––classpath ./ ”java exe filename”classpath ./ ”java exe filename” to to

execute your JAVA application.execute your JAVA application.

 In the example,In the example, ad7918.classad7918.class is the exe filename.is the exe filename.

Some RemarksSome Remarks

 RoBoIO recognizes RoBoard’s CPU, and doesn’t RoBoIO recognizes RoBoard’s CPU, and doesn’t

run on other PC.run on other PC.

 It is suggested to login WinXP with administrator It is suggested to login WinXP with administrator

account for running RoBoIO applications.account for running RoBoIO applications.

 Don’t run RoBoIO applications on Network Disk, Don’t run RoBoIO applications on Network Disk,

which may fail RoBoIO.which may fail RoBoIO.

Issue on the Version of JDKIssue on the Version of JDK

 You should install JDK in RoBoard in order to You should install JDK in RoBoard in order to

run your RoBoIO JAVA applications.run your RoBoIO JAVA applications.

 Note that the newest JDK uses i686 instructions Note that the newest JDK uses i686 instructions

(e.g., cmov) not supported by RoBoard; so please (e.g., cmov) not supported by RoBoard; so please

install older JDK (e.g., JDKinstall older JDK (e.g., JDK--1.2.1).1.2.1).

ApplicationsApplications

IntroductionIntroduction

 x86x86--basedbased Almost all resources on PC can be Almost all resources on PC can be

employed as development tools of RoBoard.employed as development tools of RoBoard.

 Languages:Languages: C/C++/C#, Visual Basic, Java, Python, C/C++/C#, Visual Basic, Java, Python,

Matlab, …Matlab, …

 Libraries:Libraries: OpenCV, SDL, …OpenCV, SDL, …

 IDE:IDE: Visual Studio, DevVisual Studio, Dev--C++, Code::Blocks, …C++, Code::Blocks, …

 GUI (if needed):GUI (if needed): MFC, Windows Forms, GTK, …MFC, Windows Forms, GTK, …

IntroductionIntroduction

 Rich I/O interfacesRich I/O interfaces Various sensors & devices Various sensors & devices

can be employed as RoBoard’s senses.can be employed as RoBoard’s senses.

 A/D, SPI, IA/D, SPI, I22C:C: accelerometer, gyroscope, …accelerometer, gyroscope, …

 COM:COM: GPS, AI servos, …GPS, AI servos, …

 PWM:PWM: RC servos, DC motors, …RC servos, DC motors, …

 GPIO:GPIO: bumper, infrared sensors, on/off switches, …bumper, infrared sensors, on/off switches, …

 USB:USB: webcam, …webcam, …

 Audio in/out:Audio in/out: speech interfacespeech interface

IntroductionIntroduction

Rich I/O (using RoBoIO) + Rich
resources on PC

Can develop robots more easily and
rapidly

ExperiencesExperiences

 Mobile robot controlled by wireless joystickMobile robot controlled by wireless joystick

 RoBoIO library + Allegro game libraryRoBoIO library + Allegro game library

 Take < 20 minutes to complete the control programTake < 20 minutes to complete the control program

ExperiencesExperiences

 KONDO manipulator with object tracking & face KONDO manipulator with object tracking & face

recognitionrecognition

 RoBoIO library + OpenCV libraryRoBoIO library + OpenCV library

 Take < 3 hours to complete the programTake < 3 hours to complete the program

ExperiencesExperiences

 KONDO humanoid (motion capture + replay, KONDO humanoid (motion capture + replay,

script control, MP3 sound, compressed data files)script control, MP3 sound, compressed data files)

 RoBoIO library + irrKlang library + zziplib libraryRoBoIO library + irrKlang library + zziplib library

 Take < 5 days to complete the programTake < 5 days to complete the program

Thank YouThank You

tech@roboard.com

