RoBolO 1.8
Software Development
Introduction

DMP Electronics Inc.
Robotics Division
June 2011

Overview

RoBolO Library

e A open-source library for RoBoard’s unique
I/O functions

® Free for academic & commercial use

e Everyone is permitted to redistribute and/or modify
it without restriction.

RoBolO Library

e Supported I/O functions
e A/D (Analog-to-Digital Converter)
e SPI (Serial Peripheral Interface)
e I°C (Inter-Integrated Circuit Interface)
e COM (RS-232, RS-485, TTL Serial Ports)
e PWM (Pulse-Width Modulation)
e GPIO (General-Purpose Digital 1/O)
e RC servo control (KONDO, HiTEC, ...)

RoBolO Library

e Supported platforms
e Windows XP: Visual Studio 2005/2008

require WinIo or PciDebug runtimes
e Windows CE: Visual Studio 2005/2008
e Linux: gcc

e DOS: DJGPP, Watcom C++, Borland C++ 3.0~5.02

Architecture

User Application

A/D lib COM lib
(high level) (high & low level)

SPI lib I?C lib
(high & low level)@l(high & low level)

Portable I/O lib
(low level)

RC Servo lib
(high level)

PWM lib
(low level)

RoBolO Library

e Include roboard.h to use

e Call roboio_SetRBVer(rb_ver)
to set your RoBoard correctly

Usage Overview

SPI lib

A/D lib

I’C lib

COM lib

RC Servo lib

#include <roboard.h>

int main() {
roboio_SetRBVer(..);
// use API of RoBoIO
// library here

return O;

e select rb_ver = RB_100, RB_100RD, RB_110 or RB_050

according to your RoBoard version

Usage Overview

e Include roboard dll.h instead,
if you use the RoBolO DLL
version

e Note: The DLL version is only
available on

e Windows XP
e Windows CE

#include <roboard _dll.h>

int main() {
roboio_SetRBVer(..);
// use API of RoBoIO
// library here

return O;

Usage Overview

e Error reporting of RoBolO API

e When any API function fails, you can always call
roboio_GetErrMsg()

to get the error message.

e Example

if (rcservo_Init(..) == false) {
printf(“Fail to initialize RC Servo lib!!!\n”);
printf(“Error message: %s\n”, roboio_GetErrMsg());
exit(0);

Usage Overview

e Remarks

e For using PWM lib, you need to include pwm.h
additionally

e Don’t use both PWM lib and RC Servo lib at the
same time

because PWM lib is managed within RC Servo lib

SPI lib

RoBoard H/W SPI Features & Limits

e Dedicated to SPI flash
e Half-Duplex

spipo _lspivite]

SPIDI

e Support only high-speed devices
e Max: 150 Mbps
e Min: 10 Mbps

RoBoard H/W SPI Features & Limits

e Support only two clock modes
e CPOL =0, CPHA =0 Mode

e CPOL =1, CPHA =0 Mode

HRHAHAHARF
Iinfinlsfininlxlinfl

CPOL=0
CPOL =1

ESREVRERE ST E D E RSN
ATk

e See http://en.wikipedia.org/wiki/Serial Peripheral Interface Bus for

more information about SPI clock modes.

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

RoBoard H/W SPI Features & Limits

e Remarks

e On RB-110 & RB-050, the native SPI can only be
used internally to access the on-board A/D.

e If you need SPI interface on RB-110, use RB-110’s
FTDI General Serial Port (COMS6).

Refer to the application note: RB-110 SPI How-To for more
information.

Usage Overview

if (spi_Init(clock mode)) {
unsigned val = spi Read(); //read a byte from SPI bus
spi_Write(Ox55); //write a byte (@x55) to SPI bus

spi_Close(); //close SPI lib

}

e clock_mode can be, e.g.,
e SPICLK_10000KHZ (10 Mbps)
e SPICLK_12500KHZ (12.5 Mbps)
e SPICLK_21400KHZ (21.4 Mbps)
e SPICLK_150000KHZ (150 Mbps)

e See spi.h for all available clock modes.

SPI-Write Functions

e Two different SPI-write functions:

spi_Write() vs. spi_ WriteFlush()

e All data are written to SPI FIFO, and then transferred by
Hardware.

spi_Write() or SPIDO

spi_WriteFlush()

SPI-Write Functions

e Two different SPI-write functions: (cont.)

e spi_Write() does not wait transfer completion.
Faster
But must be careful about timing issue

Can call spi_FIFOFlush() to flush SPI FIFO
e spi_WriteFlush() waits that SPI FIFO becomes empty.

SPISS Pin

e Control of the SPISS pin of RB-100/100RD
e spi EnableSS(): set SPISSto 0
e spi DisableSS(): set SPISSto1
e SPISS is usually used for turning on/off SPI
devices

e If need more than one SPISS pin, simulate them using
RoBoard’s GPIO

For GPIO, refer to the section of RC Servo lib.

Software-Simulated SPI

e From v1.6, RoBolO includes S/W-simulated SPI

functions to support low-speed SPI devices.

e Features of S/W-simulated SPI
e Max Speed: ~160Kbps
e Full-Duplex

spipo _ |ilwritedata | [[writedatal|
sppi | readdata | [readdata |

e All SPI clock modes supported

For an explanation of SPI clock modes, see
http://en.wikipedia.org/wiki/Serial Peripheral Interface Bus

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

Software-Simulated SPI

e Usage overview

if (spi_InitSW(clock_mode, clock delay)) {

// Half-Duplex read/write

unsigned vall = spi_Read(); //read a byte from SPI bus

spi_ Write(Ox55); //write a byte (0x55) to SPI bus

// Full-Duplex read/write

unsigned val2 = spi_Exchange(©@xaa);
//write a byte (©xaa) & read a byte from
//SPI bus at the same time

spi_CloseSW(); //close S/W-simulated SPI

Software-Simulated SPI

e Usage overview (cont.)

e clock mode can be
SPIMODE_CPOLO + SPIMODE_CPHA®
SPIMODE_CPOLO + SPIMODE_CPHA1
SPIMODE_CPOL1 + SPIMODE_CPHA®
SPIMODE_CPOL1 + SPIMODE_CPHA1

e clock_delay can be any unsigned integer to control
S/W-simulated SPI clock speed.

If clock_delay = 0, the clock speed is about 160Kbps.

A/D lib

RoBoard A/D Features

e Employ ADI AD7918

e 10-bit resolution & 1M samples per second

e Share RoBoard’s SPI bus

e When accessing A/D, signals appear on SPICLK, SPIDO, SPIDI
pins of RB-100/100RD.

e So be careful about bus conflict if you have devices attached to
SPI bus of RB-100/100RD.

Disable your external SPI devices (using, e.g., SPISS pin of RB-
100/100RD) when accessing A/D.

Usage Overview

if (spi_Init(SPICLK_21400KHZ)) {

spi_Close();
}

e To use the 8-channel A/D, we must initialize SPI lib first.
e SPI clock must < 21.4 Mbps

e Only provides the usual functions of AD7918
e Refer to AD7918 datasheet if you want to extend A/D lib.

Usage Overview

e If need more detailed control, call adc_ReadChannel()
instead:

if (spi_Init(SPICLK_21400KHZ)) {
int val = adc_ReadChannel(channel, //channel = @ ~ 7
ADCMODE_RANGE_2VREF,
ADCMODE_UNSIGNEDCODING);

spi Close();

}

Usage Overview

e Input-voltage range:

e ADCMODE_RANGE_2VREF: OV ~ 5V

allow higher voltage
e ADCMODE_RANGE_VREF: 0V ~ 2.5V

allow higher resolution
e A/D value range:
e ADCMODE_UNSIGNEDCODING: 0 ~ 1023
e ADCMODE_SIGNEDCODING: —512 ~ 511

e min value = lowest voltage, max value = highest voltage

e Remarks: adc_ReadCH() uses ADCMODE_RANGE_2VREF and
ADCMODE_UNSIGNEDCODING as default settings.

Batch Mode

e adc_ReadChannel() is slower due to channel-
addressing overhead.

e In batch mode, multiple channels are read without
channel-addressing = better performance
e adc_InitMCH(): open batch mode
e adc_ReadMCH(): read user-assigned channels

e adc_CloseMCH(): close batch mode

Batch Mode

int* ad_data;
if (adc_InitMCH(ADC_USECHANNELO® + ADC_USECHANNEL1 + ..
ADCMODE_RANGE_2VREF,
ADCMODE_UNSIGNEDCODING)) {
adc_data = adc_ReadMCH();
for (i=0; i<8; i++)
printf(“A/D channel %d = %d”, i, adc_data[i]);

adc_CloseMCH();
}

e Parameters ADC_USECHANNELO ~ ADC_USECHANNEL?

e Indicate which A/D channels to read in batch mode

12C lib
(Simple API)

RoBoard H/W 12C Features

e Support both master & slave modes

e Support 10-bit address (master only)

e but not implemented in RoBolO

e Support all I’C speed modes
e standard mode (~100 Kbps)

e fast mode (~400 Kbps)
must pull-up 12C0_SCL, 12C0_SDA pins
e high-speed mode (~3.3 Mbps)
To achieve 3.3 Mbps, pull-up resisters should < 1K ohm

Usage Overview: Master Mode

if (i2c_Init(speed_mode, bps)) {

i2c_Close(); //close I2C lib
}

e speed_mode can be
e I2CMODE_STANDARD: standard mode
e TI2CMODE_FAST: fast mode
e TI2CMODE_HIGHSPEED: high-speed mode

e TI2CMODE_AUTO: automatically set speed mode according to bps

e bps can be any integer < 3300000 (3.3 Mbps)

Master API

e i2c_Send(addr, buf, size): write a byte sequence
to I?C device

e addr: the I?’C device address
e buf: the byte array to write

e size: the number of bytes to write

unsigned char buf[3] = {0x11, ©x22, Ox33};

i2c_Send(0x30, buf, 3); //write 3 bytes to an I2C device
//with address 0x30

Master API

e i2c_Receive(addr, buf, size): read a byte
sequence from I?C device

e addr: the I?C device address
e buf: the byte buffer to put read bytes

e size: the number of bytes to read

unsigned char buf[3];

i2c_Receive(0x30, buf, 3); //read 3 bytes from an I%C
//device with address 0x30

Master API

e i2c_SensorRead(addr, cmd, buf, size): a general
function used to read I>C sensor data

e Will first write cmd to I2C device, and then send I?°C RESTART
to read a byte sequence into buf

e addr: the I?C device address

e cmd: the byte to first write

Usually corresponds to a command of an I2C sensor
e buf: the byte buffer to put read bytes

e size: the number of bytes to read

Master API

i2c_SensorReadEX(addr, cmd, csize, buf, size):
a general function used to read I°C sensor data

e Same as i2c_SensorRead() except that cmd is a byte array here

Used for the case where I>C sensor command is > 1 byte
e addr: the I’C device address
e cmd: the byte array to first write
e csize: the number of bytes in cmd
e buf: the byte buffer to put read bytes

e size: the number of bytes to read

Master API

unsigned char buf[2];

// first write 0x02 to an I?C device with address 0x70
// and then restart to read 2 bytes back
i2c_SensorRead(0x70, 0x02, buf, 2);

unsigned char cmd[2] = {0x32, Ox33};
unsigned char buf[6];

// first write 0x32 & 0x33 to an I?C device with address ©x53
// and _then restart to read 6 bytes back
i2c_SensorReadEX(0x53, cmd, 2, buf, 6);

Remarks on 12C Device Address

e Some vendors describes their devices’ address as 8-bit
address of the form:

[7-bit slave address, R/W bit]

e Ex.: the SRF08 ultrasonic sensor has address OxEOQ (for read)
and OxE1 (for write) by default.

e The LSB of these addresses are actually the R/W bit.

e When accessing such devices, you should put the 7-bit
slave address in RoBoIO I2C API calls, rather than the
8-bit address.

|2C ~Reset Pin of RB-110/RB-050

e Control of the ~Reset pin on I>’C connector of RB-
110/RB-050

e i2c_SetResetPin(): set ~Reset pin to output HIGH

e i2c_ClearResetPin(): set ~Reset pin to output LOW

e By default, the BIOS will set ~Reset pin to HIGH
after booting.

Software-Simulated 12C

e From v1.8, RoBolO includes S/W-simulated I>C
functions to support non-standard I?°C devices (e.g.,
LEGO® NXT ultrasonic sensor).

e Support only I?’C master mode

e Consider no I2C arbitration

i.e., assume there is only one master on the I>’C bus

e Output 3.3V as logic HIGH

Should ensure your devices accept 3.3V as input

Software-Simulated 12C

e Usage overview

if (i2c_InitSW(i2c_mode, clock_delay)) {
//you can use any master API here; e.g.,
unsigned char buf[3] = {0x11, Ox22, ©x33};
i2c_Send(0x53, buf, 3);
i2c_SensorRead(0x53, 0x02, buf, 3);

i2c._CloseSW(); //close S/W-simulated IZC

Software-Simulated 12C

e Usage overview (cont.)

e i2c_mode can be
I2CSW_NORMAL: simulate standard I>C protocol
I2CSW_LEGO: simulate LEGO® NXT I?C protocol

e clock_delay is any unsigned integer to control S/W-
simulated I>C clock speed.

For LEGO® NXT sensors, the suggested clock_delay is 46
to achieve 9600bps.

If clock_delay = 0, the clock speed is about 75Kbps.

12C lib
(Advanced API)

Advanced Master API

e The most simple ones of all advanced I?C Master API
e i2cOmaster_StartN(): send START signal to slave devices
e i2cOmaster_WriteN(): write a byte to slave devices
e i2cOmaster_ReadN(): read a byte from slave devices

e Automatically send STOP signal after reading/writing the last byte

i2cOmaster_StartN(0x30, //slave address = 0Ox30
I2C_WRITE, //perform write action (use I2C_READ
//instead for read action)
3); //3 bytes to write

i2cOmaster WriteN(Ox11);
i2cOmaster WriteN(0x22);
i2cOmaster_WriteN(0x33); //auto send STOP after this

Advanced Master API

e Send RESTART instead of STOP
e Call i2cOmaster_SetRestartN() before the first reading/writing

e Then RESTART signal, instead of STOP, will be sent after
reading/writing the last byte

i2cOmaster_StartN(0x30, I2C_WRITE, 2);

//set to RESTART for reading 1 bytes (after I?C writes)
i2cOmaster_SetRestartN(I2C_READ, 1);

i2cOmaster_WriteN(0x44);
i2cOmaster_WriteN(0x55); //auto send RESTART after this

data = i2cOmaster_ReadN(); //auto send STOP after this

Usage Overview: Slave Mode

if (i2c_Init(speed_mode, bps)) {
//set slave address (7-bit) as, e.g., 0x30
i2cO@slave SetAddr(0x30);

i2c_Close(); //close I2C lib

}

e This mode allows you to simulate RoBoard as an I?C slave device.

e In Slave Event Loop, you should use Slave API (rather than
Master API) to listen and handle I>C bus events.

Slave Event Loop

switch (i2c@slave_Listen()) {

case I2CSLAVE_START: //receive START signal
//action for START signal
break;

case I2CSLAVE_WRITEREQUEST: //request slave to write
//handle write request
break;

case I2CSLAVE_READREQUEST: //request slave to read
//handle read request
break;

case I2CSLAVE_END: //receive STOP signal
//action for STOP signal
break;

...... //can do stuff here when listening

Slave Read/Write API

e Call i2c@slave_Write() for sending a byte to master

case I2CSLAVE_WRITEREQUEST:
i2c@slave Write(byte value);
break;

case I2CSLAVE_READREQUEST:
data = i2cO@slave Read();
break;

RC Servo lib

(with GPIO functions)

Features

e Dedicated to PWM-based RC servos
e Employ RoBoard’s PWM generator
e So don’t use RC Servo lib & PWM lib at the same time

e Can read the width of feedback pulses
e Very accurate in DOS (+1us)

e Occasionally miss accuracy in XP, CE, and Linux, when the OS
is being overloaded

e Support GPIO (digital I/O) functions

Usage Overview

rcservo_Close();

}

e Parameters RCSERVO_USEPINS1 ~ RCSERVO_USEPINS24

e Indicate which PWM pins are used as Servo Mode (for RB-110/ RB-
050, RCSERVO_USEPINS17 ~ RCSERVO_USEPINS24 are invalid)

e Other unused PWM pins will be set as GPIO Mode

Usage Overview

e Servo Configuration API allows to configure various servo
parameters.

e PWM period, max/min PWM duty

e Feedback timings for position capture

e Servo-mode pins allow three servo manipulation modes.
e Capture mode (for reading RC servo’s position feedback)
e Action playing mode (for playing user-defined motions)

e PWM mode (send PWM pulses for individual channels)

Configure Servo Setting

e Method 1: Use built-in parameters by calling

rcservo_SetServo(pin, servo_model)

e pin indicates which PWM pin to set, and can be
RCSERVO_PINS1 ~ RCSERVO_PINS24

For RB-llO/RB-O50, RCSERVO_PINS17 ~ RCSERVO_PINS24 are
invalid.

Configure Servo Setting

e Method 1: (cont.)
e servo_model indicates what servo is connected on the
PWM pin, and can be
RCSERVO_KONDO_KRS78X: for KONDO KRS-786/788 servos
RCSERVO_KONDO_KRS4024: for KONDO KRS-4024 servos

RCSERVO_KONDO_KRS4014: for KONDO KRS-4014 servos

e KRS4014 doesn’t directly work on RB-100/RB-110; see later
slides for remarks.

RCSERVO_HITEC_HSR8498: for HITEC HSR-8498 servos

Configure Servo Setting

e Method 1: (cont.)

e servo_model can be (cont.)
RCSERVO_FUTABA _S3003: for Futaba S3003 servos
RCSERVO_SHAYYE_SYS214050: for Shayang Ye SYS-214050

Servos

RCSERVO_TOWERPRO_MG995, RCSERVO_TOWERPRO_MG996: for
TowerPro MG995 & MG996 servos

Configure Servo Setting

e Method 1: (cont.)

e servo_model can be (cont.)

RCSERVO_GWS _SO3T, RCSERVO_GWS_S777: for GWS S03T &
S777 series servos

RCSERVO_GWS_MICRO: for GWS MICRO series servos

RCSERVO_DMP_RS0263, RCSERVO_DMP_RS12760: for DMP RS-
0263 & RS-1270 servos

Configure Servo Setting

e Method 1: (cont.)

e servo_model can be (cont.)

RCSERVO_SERVO_DEFAULT: attempt to adapt to various
servos of supporting position feedback

RCSERVO_SERVO_DEFAULT_NOFB: similar to the above
option, but dedicated to servos with no feedback

e Default option if you don’t set the servo model before calling
rcservo_Init()

e If you don’t know which model your servos match, use
RCSERVO_SERVO_DEFAULT_NOFB

Configure Servo Setting

//PWM pin S1 connects KONDO servo KRS-786/788
rcservo_SetServo(RCSERVO PINS1, RCSERVO _KONDO KRS78X);

//PWM pin S3 connects DMP servo RS-0263
rcservo_SetServo(RCSERVO PINS3, RCSERVO DMP_RS0263);

//open RC Servo lib to control servos on pins S1 & S3
if (rcservo_Init(RCSERVO _USEPINS1 + RCSERVO_USEPINS3)) {

rcservo_Close();

}

Configure Servo Setting

e Method 2: Call parameter-setting functions to set
customized parameters

e In theory, using this method, we can adapt RC Servo lib
to any PWM-based RC servos.

e Itrequires detailed servo knowledge, and we will
provide a document for this in the future.

Manipulate Servo: Capture Mode

e Call rcservo_EnterCaptureMode() to enter this mode

e Capture mode is the initial mode of servo-mode pins
after calling rcservo_Init()

e Note: Servos with no feedback are not supported in this
mode.

e Available API in Capture mode
e rcservo_CapOne(pin): read position feedback from a
specified servo-mode pin

return OxffffffffL if fails to read feedback, or if the pin is
connected to a servo with no feedback

Manipulate Servo: Capture Mode

e Available API in Capture mode (cont.)

e rcservo_CapAll(frame): read position feedback from
all servo-mode pins

frame is an array of 32 unsigned long integers, where
frame[0@] will give position feedback on pin S1; frame[1]
on pin S2; and ...

frame[i] will give OxffffffffL if fails to read feedback
on the corresponding pin, or if the servo is with no

feedback

for RB-100/100RD, frame[24~31] are reserved; for RB-
110/050, frame[16~31] are reserved.

Manipulate Servo: Capture Mode

rcservo_EnterCaptureMode();

//read position feedback from PWM pin S3

unsigned long pos = rcservo_CapOne(RCSERVO PINS3);
//read position feedback from all servo-mode pins
unsigned long motion_frame[32];
rcservo_CapAll(motion_frame);

printf(“position feedback on PWM pin S3 is
equal to %lu microsecond\n”, motion_frame[2]);

Manipulate Servo: Capture Mode

e Available API in Capture mode (cont.)

e rcservo_ReadPositions(): read position feedback
from multiple specified servo-mode pins

//read position feedback from PWM pins S1 and S3
unsigned long motion_frame[32];
rcservo_ReadPositions (RCSERVO _USEPINS1 + RCSERVO _USEPINS3,
@, //normally = ©
motion_frame);
printf(“position feedback on PWM pins S1 and S3 are

equal to %lu and %1lu microseconds\n®,
motion_frame[0], motion_frame[2]);

Manipulate Servo:
Action Playing Mode

e Can replay the motion frames that are captured by
rcservo_CapAll()

e Methods to enter this mode

e rcservo_EnterPlayMode(): for servos with feedback

Will automatically capture the current pose as the initial motion
frame (home position)

Will reject moving servos that have no feedback

e rcservo_EnterPlayMode_ HOME (home): for servos with no
feedback

home is an array of 32 unsigned long integers which indicates the
initial motion frame.

Manipulate Servo:
Action Playing Mode

e Entering Playing Mode, all servo-mode pins will send
PWM pulses continuously.

e In general, this will make all connected servos powered
always.

e To stop the pulses, just leave Playing Mode by, e.g.,
calling rcservo_EnterCaptureMode()

Manipulate Servo:
Action Playing Mode

e Blocking API in Action playing mode

e rcservo_MoveOne(pin, pos, time): move a servo
until it reach the target position

e rcservo_MoveTo(frame, time): move all servos
until they reach to the next motion frame

frame[0@] indicates target position for servo on pin S1;
frame[1] for pin S2; and ...

frame[i] = OL indicates the corresponding servo to

remain at its last position.

Manipulate Servo:
Action Playing Mode

rcservo_EnterPlayMode();

//move servo on PWM pin S2 to position 1500us in 500ms
rcservo_MoveOne (RCSERVO PINS2, 1500L, 500);

rcservo_EnterPlayMode();

//move simultaneously both servos on PWM pins S1 and S3 to
//position 1500us in 500ms

unsigned long motion_frame[32] = {OL};

motion_ frame[0@] = 1500L;
motion_frame[2] = 1500L;
rcservo_MoveTo(motion_frame, 500);

Manipulate Servo:
Action Playing Mode

e Non-blocking API in Action playing mode

e rcservo_SetAction(frame, time): set the next
motion frame

Can be called, before the following function returns
RCSERVO_PLAYEND, to change the target positions

e rcservo_PlayAction(): push all servos to reach
the frame that was set by rcservo_SetAction()
Must call rcservo_PlayAction() repeatedly until it

returns RCSERVO_PLAYEND (which indicates that all servos
have reached the target)

Manipulate Servo:
Action Playing Mode

rcservo_EnterPlayMode();

unsigned long motion_frame[32] = {OL};

//here set up the content of motion_frame[] for playing

rcservo_SetAction(motion_frame, 500); //play motion in 500ms
while (rcservo_PlayAction() != RCSERVO_PLAYEND) {
//

//can do stuff here when playing motion

//

Manipulate Servo:
Action Playing Mode

e Non-blocking API (cont.)

e rcservo_StopAction(): stop playing the motion
frame immediately

rcservo_PlayAction() will return RCSERVO _PLAYEND after
calling this

e rcservo_GetAction(buf): getthe current
positions of all servos

buf[0] will give the position of servo on pin S1; buf[1] on
pin S2; and ...

Manipulate Servo:
Action Playing Mode

rcservo_EnterPlayMode();
unsigned long buf[32];
unsigned long motion_frame[32] = {OL};

//here set up the content of motion_frame[] for playing
rcservo_SetAction(motion_frame, 500); //play motion in 500ms
while (rcservo_PlayAction() != RCSERVO_PLAYEND) {

rcservo _GetAction(buf);

printf(“Servo on pin S1 is moving to %lu\n”, buf[0]);

}

Manipulate Servo: PWM Mode

e Call rcservo EnterPWMMode() to enter this mode

e In this mode, all servo-mode pins output 0V if no pulse
is sent.

e Available API in PWM mode

e rcservo_SendPWM(): send a given number of pulses
with specific duty and period

e rcservo_IsPWMCompleted(): return true when all
pulses have been sent out

Manipulate Servo: PWM Mode

rcservo_EnterPWMMode();
unsigned long PWM_period = 10000L; //10000us
unsigned long PWM _duty = 1500L; //1500us
unsigned long count = 100L;
rcservo_SendPWM(pin, //RCSERVO _PINS1 or RCSERVO_PINS2 or ...
PWM_period, PWM _duty, count);
while (!rcservo_IsPWMCompleted(pin)) {
//
//can _do stuff here when waiting for PWM completed

//

Manipulate Servo: PWM Mode

e Available API in PWM mode (cont.)

e rcservo_SendCPWM(): send continuous pulses with
specific duty and period

e rcservo_StopPWM(): stop the pulses caused by
rcservo_SendPWM()/rcservo_SendCPWM()

e rcservo_CheckPWM(): return the remaining number of
pulses to send

return OL if pulses have stopped

return OxffffffffL for continuous pulses

Manipulate Servo: PWM Mode

rcservo_EnterPWMMode();
unsigned long PWM_period = 10000L; //10000us
unsigned long PWM_duty = 1500L; //1500us

rcservo_SendCPWM(pin, //RCSERVO_PINS1 or RCSERVO_PINS2 or..
PWM_period, PWM_duty);

rcservo_StopPWM(pin);

GPIO Functions

e API to control GPIO-mode pins

e rcservo_OutPin(pin, value): set GPIO-mode pin to
output HIGH or LOW

pin = RCSERVO_PINS1 or RCSERVO_PINS2or
value = 0 (output LOW) or 1 (output HIGH)

e rcservo_InPin(pin): read input from GPIO pin

Return 0 if it read LOW, and 1 if it read HIGH

e The API will do nothing if pin is a servo-mode pin.

BIOS Setting for RC Servos

e Some RC servos (e.g., KONDO KRS-788) require
the PWM input signal = LOW at power on.

e Configure RoBoard’s PWM pins to achieve this

e STEP 1: Switch the pull-up/pull-down switch to “pull-
down”

e STEP 2: Go to BIOS Chipset menu

e STEP 3: Select SouthBridge Configuration —
Multi-Function Port Configuration

BIOS Setting for RC Servos

e Configure RoBoard’s PWM pins ... (cont.)

e STEP 4: Set Porte Bito~7, Portl Bito~7, Port2
Bito~7(only for RB-100/100RD), Port3 Bit6 as Output [O]

e T & Dptions
Port® Function [GPIO]
Port® BitO Direction [ouTl 4]
Output (ol i |

Port@ Bitl Direction

[ouTl

Portd Bit2 Directiom [OUT1]
Output [o1

Portd® Bit3 Direction [ouTl
Output (ol

Port® Bit4 Direction [OUT1
Mas 4 wvan# rmu

e Can also set RoBoard’s PWM pins = HIGH at power on

e Just switch the pull-up/pull-down switch to “pull-up”

Remarks for KONDO KRS-4014

e KRS-4014 servos also require PWM = LOW at
power on.

e But the former pull-up/~-down setting is not enough to
make KRS-4014 work on RB-100/RB-110.

® You also need to power on KRS-4014 and RB-100/RB-110
at different time.

This implies that you need to power-supply the both
separately.

Remarks for KONDO KRS-4014

e Example: Make KRS-4014 work on RB-110.

e STEP 1: turn on the system
power of RoBoard first

HMIBIOS (C) 2009 American Megatrends.
BIOS Date: 03/16/2010 Robort 1 ASS

e STEP 2: wait the BIOS ™™

Press DEL to run Setup
Press F11 for BBS POPUP
Initializing USB Controllers .. Done

screen appeared = LB

Auto-Detecting Pri Master..IDE Hard llk

e STEP 3: turn on the servo
power for KRS-4014

PWM lib

PWM lib Usage

e Allow users to employ complete RoBoard’s PWM
features

e Control polarity of PWM waveform
e Control PWM resolution (maximum resolution = 20ns)

e Enable PWM interrupt

PWM lib Usage

e See pwm.h and pwmdx.h for available API.

e To use PWM lib, a detailed understanding of RoBoard’s
H/W PWM functions is required.

® Do not use PWM lib when RC Servo
1ib is in use.

e You should use PWM functions of RC Servo lib instead.

COM Ports

RoBoard Native COM Ports

e COM1~COM4 can be used as standard COM ports in
WinXP, Linux, and DOS

e Max speed

e RB-100: 115200 bps
e RB-100RD/RB-110/RB-050: 748800 bps

e Can customize each native COM port in BIOS
o IRQ
e I/O base address
e Default speed

Boosting Mode of RB-100RD/110/050
Native COM Ports

e RB-100RD/RB-110/RB-050"s native COM ports support
baudrates up to 750K bps, provided that COM boosting
mode is enabled.

e When boosting mode enabled,

the real baudrate = 13 x the original baudrate

e For example, if boosting mode of COMS3 is enabled and its
baudrate is set to 38400 bps, the real baudrate is 38400 x 13 =
500K bps.

e In boosting mode, the maximum baudrate is 57600 x 13 =
750Kbps (115200 x 13 is not allowed)

How to Enable Boosting Mode of RB-
100RD/110/050 Native COM Ports

e Method 1: Using BIOS
Go to RB-100RD/110/050 BIOS Chipset menu

e STEP1:
e STEP 2:

e STEP 3:

e STEP 4:

Select SouthBridge Configuration —

Serial/Parallel Port Configuration

Select the COM port

that you want to boost
Set its baudrate to

any speed > 115200 bps

BI0S SETUP UTILITS

= ort2 Address

() Select
Baud Rate

} Serial Port3 Address
[RQ Select

Baud Rate

3B Serial Portd Address
IR) Select

Baud Rate

1 3F8I
[1R(4]
Options
2400 BPS(Low Speed)
4800 BPS(Low Speed)
96060 BPS(Low Speed)
19200 BPS(Low Speed)
38400 BPS(Low Speed)
57600 BPS(Low Speed)
115200 BPS{(Low Speed)
31200 BPS(Hi Speed)

62400 BPS(Hi Speed)
124800 BPS(Hi Speed)

249600 BPS(Hi Speed)
499208=173i=Bpocd)

48800 BPS (Hi Seed))
S — =t |

Options
2400 BPS(Low Spee
4800 BPS{Low Speed)
9600 BPS(Low Speed)
19200 BPS(Low Speed)

368400 BPS(Low Speed)
57600 BPS (Low Speed)
115200 BPS (Low Speed)
31200 BPS(Hi Speed)
62400 BPS(Hi Speed)

L Select Screen
T Select Iten
»- Change Option
Fi General Help
F10 Save and Exit
ESC Exit

v02.58 (C)Copyright 1985-2009, American Megatrends, Inc.

How to Enable Boosting Mode of RB-
100RD/110/050 Native COM Ports

e Method 2: Using rbcom.exe in RoBoKit.

e Run rbcom.exe directly to see its usage

e Method 3: Using the isolated API of COM lib (refer to
the later COM lib slides)

io _init();

io close();

RB-110 FTDI COM Ports

o COMS5 & COMBG of RB-110 are realized by its on-
board FTDI FT2232H chip.

e So require to install dedicated drivers for their usage

See also RB-110 WinXP/Linux installation guide for more
information.

e Detailed application notes for FI'DI FI2232H can be
found on FTDI's web site:

http://www.ftdichip.com/Support/FTDocuments.htm

FTDI COM vs. Native COM

e FTDI COM allows faster baudrates than RoBoard’s
native COM.

e But FTDI COM has also much longer latency
between two packet transmission.

e In transmitting multiple packets, FTDI COM may be
slower than native COM due to its latency.

® You should experiment to see which COM is more
suitable to your application.

FTDI COM vs. Native COM

e Example of FTDI COM vs. Native COM

CHI 200V CH2 200v M100ws CHIZ 128V

<lHe

RB-110 (FTDI) COMS at RB-110 (native) COM3 at
1Mbps sends 3 bytes 500Kbps sends 3 bytes

COM lib

Usage Overview

e From RoBolO 1.8, we add COM lib to

e make users easier to handle H/W features (e.g., boosting mode)
of RoBoard’s native COM ports

e provide a simple and unified serial API for various OS

Currently only support WinXP, WinCE, Linux

e Note that COM lib only deals with RoBoard’s native
COM, i.e., COM1~COM4.

e So RB-110's COMS5 & COMBG6 aren’t considered.

Usage Overview

e The API has different prefixes for different COM ports.
e coml ... for COM1
e com2_...for COM2
e com3 ... for COM3
e comd ... for COM4

e Following slides shall only mention COM3 API for
illustration.

Usage Overview

if (com3_Init(mode)) {
com3_SetBaud(.....); //optional
com3_SetFormat(....); //optional

com3_Close();

}

e mode can be

e COM_FDUPLEX: this port is used as a full-duplex COM (invalid for COM2 and
RB-100/100RD’s COM4)

e COM_HDUPLEX: this port is used as a half-duplex COM (invalid for COM1)
Select this if you short the TX/RX lines of COM3

Baudrate

e com3_SetBaud(baudrate): set the baudrate; baudrate
can be

e COMBAUD_748800BPS: 750Kbps (invalid for RB-100)
e COMBAUD_499200BPS: 500Kbps (invalid for RB-100)
e COMBAUD_115200BPS: 115200bps

e COMBAUD_9600BPS: 9600bps

L DN (See com.h for all available baudrates)

e The default baudrate is 115200bps when calling
com3 _Init().

Data Format

e com3_SetFormat(bytesize, stopbit, parity): set
the data format

e bytesize can be
COM_BYTESIZES: byte size =5 bits
COM_BYTESIZE6: byte size = 6 bits
COM_BYTESIZE7: byte size =7 bits
COM_BYTESIZES: byte size = 8 bits

e stopbit can be

COM_STOPBIT1: 1 stop bit
COM_STOPBIT2: 2 stop bit

Data Format

e com3_SetFormat(..): (cont.)

e parity can be
COM_NOPARITY: no parity bit
COM_ODDPARITY: odd parity
COM_EVENPARITY: even parity

o The default data format is 8-bit data, 1 stop bit, no
parity when calling com3_Init().

Write API

e com3_Write(byte): write a byte to COM3

com3 Write(Ox55); //write 06x55 to COM3

e com3_Send(buf, size): write a byte sequence to
@0\ K

e buf: the byte array to write

e size: the number of bytes to write

unsigned char buf[3] = {0x11, ©@x22, Ox33};

com3_Send(buf, 3); //write 3 bytes to COM3

Write API

e com3_ClearWFIFO(): cancel all bytes in write-FIFO

e com3_FlushWFIFO(): wait until all bytes in write-FIFO
are sent out

unsigned char buf[4] = {Oxff, Ox01, Ox02, Ox01};

com3_Send(buf, 4); //write 4 bytes to COM3
com3_FlushWFIFO(); //wait until these bytes are sent out

Read API

e com3_Read(): read a byte from COM3

e return Oxffff if timeout

unsigned int data = com3_Read();

e com3_Receive(buf, size): read a byte sequence
from COMS3

e buf: the byte buffer to put read bytes

e size: the number of bytes to read

unsigned char buf[3];

com3_Receive(buf, 3); //read 3 bytes from COM3

Read API

e com3_ClearRFIFO(): discard all bytes in read-FIFO

e com3_QueryRFIFO(): query the number of bytes in
read-FIFO

unsigned char buf[4];

while (com3_QueryRFIFO() < 4); //wait until there are
//4 bytes in read-FIFO
com3_Receive(buf, 4); //read the 4 bytes from read-FIFO

Special API for Al Servos

e com3_ServoTRX(cmd, csize, buf, size): send

servo command to and then read feedback data from
COM3

e cmd: the byte array to send first
e csize: the number of bytes in cmd
e buf: the byte buffer to put read bytes

e size: the number of bytes to read

Special API for Al Servos

unsigned char cmd[6] = {Oxff, oxff, Ox0l1l, Ox02, 0x01, Oxfb};
unsigned char buf[6];

// ping Dynamixel AX-12 servo of ID 0x01
com3_ServoTRX(cmd, 6, buf, 6);

printf(“The feedback of AX-12 is ”);
for (int 1 = 0; 1 < 6; i++)

printf(“%d *, buf[i]);
printf(“\n”);

Isolated API

e There are isolated API that can work without
com3 Init() & com3 Close()

e com3_EnableTurboMode(): enable COM3’s boosting
mode (invalid for RB-100)

e com3_DisableTurboMode(): disable COM3’s boosting
mode (invalid for RB-100)

e Isolated API are usually used with external serial-
port libraries.

Isolated API

e Usage 1: (without com3_Init() & com3_Close())

e will reserve the change made by isolated API even when the
program exit

io_init(..);

io_close(); //the boosting-mode setting would be reserved

e Note that except isolated API, you shouldn’t mix COM lib
with other serial lib (i.e., after you call com3_Init(), don’t use
other serial lib to access COM3).

Isolated API

e Usage 2: (with com3_Init() & com3_Close())

e will restore the change made by the isolated API

com3 Init(..);

com3 _Close(); //will restore COM3’s original
//boosting-mode setting after this

e This is not the recommended usage of isolated API.

Installation
(for Visual Studio 2005/2008)

Setup in VS2005/2008

e Decompose RoBolO bin zip-file to, e.g., C: \RoBoard

e Examples: sample codes for RoBolO library
e Include: include files of RoBolO library
e Lib: binary files of RoBolO library

e Winio: needed when using RoBolIO under WinXP

Setup in VS2005/2008

e Setting RoBolIO in your VC2005/2008 project

figuration Properties

-General

-Debugging

General

Uptimization

Janifest File

- Debugging

Platform: |Active(Win32) Configuration Manager...

Additional Include Directories .L\F‘obcmrd\lncludd

Resolve #using References
Information Format Disabled
Startup Banner Y /nologo)
Warning Lewvel Level 3 (yW3)
Detect &4-bit Portability Issues | Yes (/\Wp64)
Treat Warnin rors MNao

v ac

Yes (/MOLC
Ignore Import Library .
Register Output =

Additional Library Directories ‘ CARoboard\Lib\WC2005

Link Library Dependencies Ves

Use Library Dependency Inputs Mo

Setup in VS2005/2008

e Setting RoBolO in your VC2005/2008 project (cont.)

e If using the static version

m- Common Properties Additional Dependencies C__ [GSERIeNITY
Ignore All Default Libraries Mo
Ignore Specific Library

Module Definition File

Add Module to Assembly

Embed Managed
Force Symbol References

Delay Loaded DLLs

VC2005/2008 compatibility: need to use the correct version
of 1ib files for VC2005 & VC2008

Setup in VS2005/2008

e Setting RoBolO in your VC2005/2008 project (cont.)

e If using the DLL version

&-Common Properties Additional Dependencies RoBolO_DLLIlib

E| Configuration Properties Ignore All Default Libraries Mo

al Ignore Specific Library
Module Definition File

Add Module to Assembly

The DLL version uses the stdcall calling convention
(compatible to VB, C#, Java, Matlab, LabVIEW, and)

Setup in VS2005/2008

If you use .NET

- Common Properties B General

onfiguration Properties Output Directory

Intermediate Directory

Jging Extensions to Delete on Clean | ®.obj®ilk® tlh;® tli;* tih;* tmp;*.rsp;* pgc® pod;S(Ta
Build Log File S(IntDir\BuildLog htm
Linker Inherited Project Property Sheets

anifest Tool Project Defaults

ESOUrces

Configuration Type Application |
anaged Resources Use of MFC Use Standard Windows Libraries
Use of ATL Mot Using ATL

Minimize CRT Use in ATL Mo

Character Set Uz dmeote Character et

Build Events
Custom Build Step

, X Common Language Buntime Sup Common Language Buntime Support (fclr)
eb Deployment F i —

Whole Program Optimization Use LI Time o

Setup in VS2005/2008

¢ To run your RoBolO application on WinXP:

1.

First install VC2005/2008 SP1 redistributable package in
RoBoard

Copy your application to RoBoard’s storage (the
MicroSD or USB storage)

Copy all files in RoBoard\Winio to your application
directory, or Window’s System32 (for .dll file) &
System32\Drivers (for .sys file) directories on RoBoard

Setup in VS2005/2008

e Some Remarks

RoBolO recognizes RoBoard’s CPU, and doesn’t run on
other PC.

It is suggested to login WinXP with administrator
account for running RoBolO applications.

Don’t run RoBolO applications on Network Disk,
which may fail RoBolO.

Setup in VS52005/2008

e If you want to develop WinCE RoBolO application

e Download Vortex86DX WinCE 6.0 SDK from RoBoard website,
and install it.

e In VS Smart Device Project Wizard, select Vortex86DX_SDK:

Select pletform SDKs to be added to the current project.

Installed SDKs: zelected SDKs:

VortesBe D SDK

1

B
<]

«]

Setup in VS2005/2008

Note that the filenames are different for WinCE.

e static version

- Common Properties Additional Dependencies ‘F‘.oEoIO_CE.Iib
iguration Properties Ignore All Default Libraries
General Ignore Specific Library
Module Definition File
Add Module to Assembly
Embed Managed Resource File

nbol References

Delay Loaded DLLs L(NOINHERIT)

m- Common Properties Additional Dependencies @ RoBolO_CE DLLIib|

uration Properties Ignore All Default Librari Mo

Ignore Specific Library

Module Definition File

Add Module to Assembly

Embed Managed Resource File

Force Symbol Referen

Delay Loaded DLLs S(NOINHERIT)

Installation
(for Linux)

Setup in Linux

e Make the RoBolO lib

e STEP 1: Ensure the gcc environment has been installed.

As an example, in Ubuntu 9.0.4, you can type

sudo apt-get install libncurses5-dev
sudo apt-get install gcc g++ make

to install a gcc environment for RoBolO compilation.

Setup in Linux

e Make the RoBolO lib (cont.)

e STEP 2: Decompress the RoBolO linux src to a directory.
e STEP 3: Going into the directory with Makefile, type

ELE

and you will get the static RoBolO lib: 1ibRBIO.a

e Remarks: You should login with root to run
RoBolO applications.

Installation
(Other Platforms)

Other Supported Platforms

e If you need to setup RoBolO in the following
platforms, please email to tech@roboard.com

e DJGPP
e Watcom C++

e Borland C++ 3.0~5.02

mailto:tech@roboard.com

Applications

Introduction

e x86-based = Almost all resources on PC can be
employed as development tools of RoBoard.

e Languages: C/C++/C#, Visual Basic, Java, Python,
LabVIEW, ...

e Libraries: OpenCV, SDL, LAPACK, ...
e IDE: Visual Studio, Dev-C++, Eclipse, ...
e GUI (if needed): Windows Forms, GTK, ...

Introduction

e Rich I/O interfaces = Various sensors & devices
can be employed as RoBoard’s senses.

e A/D, SPI, I’C: accelerometer, gyroscope, ...

e COM: GPS, Al servos, ...

e PWM: RC servos, DC motors, ...

e GPIO: bumper, infrared sensors, on/off switches, ...
e USB: webcam, ...

e Audio in/out: speech interface

Introduction

Rich I/O (using RoBolO) + Rich
resources on PC

: |

Can develop robots more easily and
rapidly

Experiences

e Mobile robot controlled by wireless joystick

e RoBolO library + Allegro game library

e Take <20 minutes to complete the control program

Experiences

e KONDO manipulator with object tracking & face
recognition

e RoBolO library + OpenCV library

e Take < 3 hours to complete the program

Experiences

¢ RoBoRC control program for KONDO humanoid

(motion capture/replay, script control, MP3 voice, compressed data files)

e RoBolO library + irrKlang library + zziplib library

e Take <5 days to complete the program

Experiences

e Teleoperation of Veltrobot humanoid by Veltrop

e RoBolO library + ROS + Kinect
e http://www.youtube.com/watch?v=GdSfLyZ14N0©

e http://www.youtube.com/watch?v=kPzv3Je2Qms

Thank You

tech@roboard.com

