
RoBoIO 1.8RoBoIO 1.8

Software Development Software Development

IntroductionIntroduction

DMP Electronics Inc.DMP Electronics Inc.

Robotics DivisionRobotics Division

June 2011June 2011

OverviewOverview

RoBoIO LibraryRoBoIO Library

 AA openopen--sourcesource library for RoBoard’s unique library for RoBoard’s unique

I/O functionsI/O functions

 Free for academic & commercial useFree for academic & commercial use

 Everyone is permitted to redistribute and/or modify Everyone is permitted to redistribute and/or modify

it without restriction.it without restriction.

RoBoIO LibraryRoBoIO Library

 Supported I/O functionsSupported I/O functions

 A/D (AnalogA/D (Analog--toto--Digital Converter)Digital Converter)

 SPI (Serial Peripheral Interface)SPI (Serial Peripheral Interface)

 II22C (InterC (Inter--Integrated Circuit Interface)Integrated Circuit Interface)

 COM (RSCOM (RS--232, RS232, RS--485, TTL Serial Ports)485, TTL Serial Ports)

 PWM (PulsePWM (Pulse--Width Modulation)Width Modulation)

 GPIO (GeneralGPIO (General--Purpose Digital I/O)Purpose Digital I/O)

 RC servo control (KONDO, HiTEC, …)RC servo control (KONDO, HiTEC, …)

 Supported platformsSupported platforms

 Windows XP:Windows XP: Visual Studio 2005/2008Visual Studio 2005/2008

 requirerequire WinIoWinIo oror PciDebugPciDebug runtimesruntimes

 Windows CE:Windows CE: Visual Studio 2005/2008Visual Studio 2005/2008

 Linux:Linux: gccgcc

 DOS:DOS: DJGPP, Watcom C++, Borland C++ 3.0~5.02DJGPP, Watcom C++, Borland C++ 3.0~5.02

RoBoIO LibraryRoBoIO Library

ArchitectureArchitecture

Portable I/O lib Portable I/O lib
(low level)

SPI lib
(high & low level)

SPI lib
(high & low level)

PWM lib PWM lib
(low level)

A/D lib
(high level)

A/D lib
(high level)

RC Servo lib

RC Servo lib
(high level)

User Application

 RoBoIO Library

I C lib
(high & low level)

I2C lib
(high & low level)

COM lib
(high & low level)

COM lib
(high & low level)

Usage OverviewUsage Overview

 IncludeInclude roboard.hroboard.h to useto use

 SPI libSPI lib

 A/D libA/D lib

 II22C libC lib

 COM libCOM lib

 RC Servo libRC Servo lib

 Call Call roboio_SetRBVer(rb_ver)roboio_SetRBVer(rb_ver)

 to set your RoBoard correctlyto set your RoBoard correctly

 selectselect rb_verrb_ver == RB_100RB_100, , RB_100RDRB_100RD, , RB_110RB_110 or or RB_050RB_050

according to your RoBoard versionaccording to your RoBoard version

#include <roboard.h>

int main() {

 roboio_SetRBVer(…);

 ……

 // use API of RoBoIO

 // library here

 ……

 return 0;

}

Usage OverviewUsage Overview

 IncludeInclude roboard_dll.hroboard_dll.h instead, instead,

if you use the RoBoIO DLL if you use the RoBoIO DLL

versionversion

 Note: The DLL version is only Note: The DLL version is only

available onavailable on

 Windows XPWindows XP

 Windows CEWindows CE

#include <roboard_dll.h>

int main() {

 roboio_SetRBVer(…);

 ……

 // use API of RoBoIO

 // library here

 ……

 return 0;

}

Usage OverviewUsage Overview

 Error reporting of RoBoIO APIError reporting of RoBoIO API

 When any API function fails, you can always callWhen any API function fails, you can always call

 roboio_GetErrMsg()roboio_GetErrMsg()

 to get the error message.to get the error message.

 ExampleExample

……

if (rcservo_Init(…) == false) {

 printf(“Fail to initialize RC Servo lib!!!\n”);

 printf(“Error message: %s\n”, roboio_GetErrMsg());

 exit(0);

}

……

Usage OverviewUsage Overview

 RemarksRemarks

 For using PWM lib, you need to include For using PWM lib, you need to include pwm.hpwm.h

additionallyadditionally

 Don’t use both PWM lib and RC Servo lib at the Don’t use both PWM lib and RC Servo lib at the

same timesame time

 because PWM lib is managed within RC Servo libbecause PWM lib is managed within RC Servo lib

SPI libSPI lib

RoBoard H/W SPI Features & LimitsRoBoard H/W SPI Features & Limits

 Dedicated to SPI flashDedicated to SPI flash

 HalfHalf--DuplexDuplex

 Support only highSupport only high--speed devicesspeed devices

 Max: 150 MbpsMax: 150 Mbps

 Min: 10 MbpsMin: 10 Mbps

spi write

spi read

SPIDO

SPIDI

RoBoard H/W SPI Features & LimitsRoBoard H/W SPI Features & Limits

 Support only two clock modesSupport only two clock modes

 CPOL = 0, CPHA = 0 ModeCPOL = 0, CPHA = 0 Mode

 CPOL = 1, CPHA = 0 ModeCPOL = 1, CPHA = 0 Mode

 SeeSee http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bushttp://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus for for

more information about SPI clock modesmore information about SPI clock modes..

CPOL = 0

CPOL = 1

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

RoBoard H/W SPI Features & LimitsRoBoard H/W SPI Features & Limits

 RemarksRemarks

 On RBOn RB--110 & RB110 & RB--050, the native SPI can only be 050, the native SPI can only be

used internally to access the onused internally to access the on--board A/D.board A/D.

 If you need SPI interface on RBIf you need SPI interface on RB--110, use RB110, use RB--110’s 110’s

FTDI General Serial Port (COM6).FTDI General Serial Port (COM6).

 Refer to the application note: Refer to the application note: RBRB--110 SPI How110 SPI How--ToTo for more for more

information.information.

Usage OverviewUsage Overview

 clock_modeclock_mode can be, e.g.,can be, e.g.,

 SPICLK_10000KHZSPICLK_10000KHZ (10 Mbps)(10 Mbps)

 SPICLK_12500KHZSPICLK_12500KHZ (12.5 Mbps)(12.5 Mbps)

 SPICLK_21400KHZSPICLK_21400KHZ (21.4 Mbps)(21.4 Mbps)

 SPICLK_150000KHZSPICLK_150000KHZ (150 Mbps)(150 Mbps)

 SeeSee spi.hspi.h for all available clock modesfor all available clock modes..

if (spi_Init(clock_mode)) {

 ……

 unsigned val = spi_Read(); //read a byte from SPI bus

 spi_Write(0x55); //write a byte (0x55) to SPI bus

 ……

 spi_Close(); //close SPI lib

}

SPISPI--Write FunctionsWrite Functions

 Two different SPITwo different SPI--write functions:write functions:

 All data are written to SPI FIFO, and then transferred by All data are written to SPI FIFO, and then transferred by

Hardware.Hardware.

spi_Write() vs. spi_WriteFlush()

 H/W SPI module

SPI FIFO
SPIDO spi_Write() or

spi_WriteFlush()

SPISPI--Write FunctionsWrite Functions

 Two different SPITwo different SPI--write functions: (cont.)write functions: (cont.)

 spi_Write()spi_Write() does not wait transfer completion.does not wait transfer completion.

 FasterFaster

 But must be careful about timing issueBut must be careful about timing issue

 Can callCan call spi_FIFOFlush()spi_FIFOFlush() to flush SPI FIFOto flush SPI FIFO

 spi_WriteFlush()spi_WriteFlush() waits that SPI FIFO becomes empty.waits that SPI FIFO becomes empty.

SPISSSPISS PinPin

 Control of theControl of the SPISSSPISS pin of RBpin of RB--100/100RD100/100RD

 spi_EnableSS()spi_EnableSS(): set : set SPISSSPISS to 0to 0

 spi_DisableSS()spi_DisableSS(): set : set SPISSSPISS to 1to 1

 SPISSSPISS is usually used for turning on/off SPI is usually used for turning on/off SPI

devicesdevices

 If need more than one If need more than one SPISSSPISS pin, simulate them using pin, simulate them using

RoBoard’s GPIORoBoard’s GPIO

 For GPIO, refer to the section of RC Servo lib.For GPIO, refer to the section of RC Servo lib.

SoftwareSoftware--Simulated SPISimulated SPI

 From v1.6, RoBoIO includes S/WFrom v1.6, RoBoIO includes S/W--simulated SPI simulated SPI

functions to support lowfunctions to support low--speed SPI devicesspeed SPI devices..

 Features of S/WFeatures of S/W--simulated SPIsimulated SPI

 Max Speed: ~160KbpsMax Speed: ~160Kbps

 FullFull--DuplexDuplex

 All SPI clock modes supportedAll SPI clock modes supported

 For an explanation of SPI clock modes, seeFor an explanation of SPI clock modes, see

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bushttp://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

write data

read data

SPIDO

SPIDI read data

write data

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

SoftwareSoftware--Simulated SPISimulated SPI

 Usage overviewUsage overview

if (spi_InitSW(clock_mode, clock_delay)) {

 ……

 // Half-Duplex read/write

 unsigned val1 = spi_Read(); //read a byte from SPI bus

 spi_Write(0x55); //write a byte (0x55) to SPI bus

 // Full-Duplex read/write

 unsigned val2 = spi_Exchange(0xaa);

 //write a byte (0xaa) & read a byte from

 //SPI bus at the same time

 ……

 spi_CloseSW(); //close S/W-simulated SPI

}

SoftwareSoftware--Simulated SPISimulated SPI

 Usage overview (cont.)Usage overview (cont.)

 clock_modeclock_mode can becan be

 SPIMODE_CPOL0SPIMODE_CPOL0 + + SPIMODE_CPHA0SPIMODE_CPHA0

 SPIMODE_CPOL0SPIMODE_CPOL0 + + SPIMODE_CPHA1SPIMODE_CPHA1

 SPIMODE_CPOL1SPIMODE_CPOL1 + + SPIMODE_CPHA0SPIMODE_CPHA0

 SPIMODE_CPOL1SPIMODE_CPOL1 + + SPIMODE_CPHA1SPIMODE_CPHA1

 clock_delayclock_delay can be any unsigned integer to control can be any unsigned integer to control

S/WS/W--simulated SPI clock speed.simulated SPI clock speed.

 IfIf clock_delayclock_delay = 0, the clock speed is about 160Kbps.= 0, the clock speed is about 160Kbps.

A/D libA/D lib

RoBoard A/D FeaturesRoBoard A/D Features

 Employ ADI AD7918Employ ADI AD7918

 1010--bit resolution & 1M samples per secondbit resolution & 1M samples per second

 Share RoBoard’s SPI busShare RoBoard’s SPI bus

 When accessing A/D, signals appear onWhen accessing A/D, signals appear on SPICLKSPICLK, , SPIDOSPIDO, , SPIDI SPIDI

pins of RBpins of RB--100/100RD.100/100RD.

 So be careful aboutSo be careful about bus conflictbus conflict if you have devices attached to if you have devices attached to

SPI bus of RBSPI bus of RB--100/100RD.100/100RD.

 Disable your external SPI devices (using, e.g.,Disable your external SPI devices (using, e.g., SPISSSPISS pin of RBpin of RB--

100/100RD) when accessing A/D.100/100RD) when accessing A/D.

Usage OverviewUsage Overview

 To use the 8To use the 8--channel A/D, we must initialize SPI lib first.channel A/D, we must initialize SPI lib first.

 SPI clock must SPI clock must  21.421.4 MbpsMbps

 Only provides the usual functions of AD7918Only provides the usual functions of AD7918

 Refer to AD7918 datasheet if you want to extend A/D lib.Refer to AD7918 datasheet if you want to extend A/D lib.

if (spi_Init(SPICLK_21400KHZ)) {

 ……

 int val = adc_ReadCH(channel); //channel = integer 0 ~ 7

 ……

 spi_Close();

}

Usage OverviewUsage Overview

 If need more detailed control, call If need more detailed control, call adc_ReadChannel()adc_ReadChannel()

instead:instead:

if (spi_Init(SPICLK_21400KHZ)) {

 ……

 int val = adc_ReadChannel(channel, //channel = 0 ~ 7

 ADCMODE_RANGE_2VREF,

 ADCMODE_UNSIGNEDCODING);

 ……

 spi_Close();

}

Usage OverviewUsage Overview

 InputInput--voltage range:voltage range:

 ADCMODE_RANGE_2VREFADCMODE_RANGE_2VREF: 0V ~ 5V: 0V ~ 5V

 allow higher voltageallow higher voltage

 ADCMODE_RANGE_VREFADCMODE_RANGE_VREF: : 00V ~ 2.5VV ~ 2.5V

 allow higher resolutionallow higher resolution

 A/D value range:A/D value range:

 ADCMODE_UNSIGNEDCODINGADCMODE_UNSIGNEDCODING: 0 ~ 1023: 0 ~ 1023

 ADCMODE_SIGNEDCODINGADCMODE_SIGNEDCODING: : 512512 ~ 511~ 511

 min value min value  lowest voltage, max value lowest voltage, max value  highesthighest voltagevoltage

 Remarks: Remarks: adc_ReadCH()adc_ReadCH() uses uses ADCMODE_RANGE_2VREFADCMODE_RANGE_2VREF and and

ADCMODE_UNSIGNEDCODINGADCMODE_UNSIGNEDCODING as default settings.as default settings.

Batch ModeBatch Mode

 adc_ReadChannel()adc_ReadChannel() is slower due to channelis slower due to channel--

addressing overhead.addressing overhead.

 In batch mode, multiple channels are read without In batch mode, multiple channels are read without

channelchannel--addressingaddressing  better performancebetter performance

 adc_InitMCH()adc_InitMCH(): open batch mode: open batch mode

 adc_ReadMCH()adc_ReadMCH(): read user: read user--assigned channelsassigned channels

 adc_CloseMCH()adc_CloseMCH(): close batch mode: close batch mode

Batch ModeBatch Mode

int* ad_data;

if (adc_InitMCH(ADC_USECHANNEL0 + ADC_USECHANNEL1 + ……,

 ADCMODE_RANGE_2VREF,

 ADCMODE_UNSIGNEDCODING)) {

 ……

 adc_data = adc_ReadMCH();

 for (i=0; i<8; i++)

 printf(“A/D channel %d = %d”, i, adc_data[i]);

 ……

 adc_CloseMCH();

}

 ParametersParameters ADC_USECHANNEL0ADC_USECHANNEL0 ~~ ADC_USECHANNEL7ADC_USECHANNEL7

 Indicate which A/D channels to read in batch modeIndicate which A/D channels to read in batch mode

II22C libC lib

(Simple API)(Simple API)

RoBoard H/W IRoBoard H/W I22C FeaturesC Features

 Support both master & slave modes Support both master & slave modes

 Support 10Support 10--bit address (master only)bit address (master only)

 but not implemented in RoBoIObut not implemented in RoBoIO

 Support all ISupport all I22C speed modesC speed modes

 standard mode (~100 Kbps)standard mode (~100 Kbps)

 fast mode (~400 Kbps)fast mode (~400 Kbps)

 must pullmust pull--upup I2C0_SCLI2C0_SCL,, I2C0_SDAI2C0_SDA pinspins

 highhigh--speed mode (~3.3 Mbps)speed mode (~3.3 Mbps)

 To achieve 3.3 Mbps, pullTo achieve 3.3 Mbps, pull--up resisters should up resisters should  1K ohm1K ohm

Usage Overview: Master ModeUsage Overview: Master Mode

 speed_modespeed_mode can becan be

 I2CMODE_STANDARDI2CMODE_STANDARD: standard mode: standard mode

 I2CMODE_FASTI2CMODE_FAST: fast mode: fast mode

 I2CMODE_HIGHSPEEDI2CMODE_HIGHSPEED: high: high--speed modespeed mode

 I2CMODE_AUTOI2CMODE_AUTO: automatically set speed mode according to: automatically set speed mode according to bpsbps

 bpsbps can be any integer can be any integer  3300000 (3.3 Mbps)3300000 (3.3 Mbps)

if (i2c_Init(speed_mode, bps)) {

 ……

 //use master API of I2C lib here

 ……

 i2c_Close(); //close I2C lib

}

 i2c_Send(addr, buf, size)i2c_Send(addr, buf, size): write a byte sequence : write a byte sequence

to Ito I22C deviceC device

 addraddr: the I: the I22C device addressC device address

 bufbuf: the byte array to write: the byte array to write

 sizesize: the number of bytes to write: the number of bytes to write

unsigned char buf[3] = {0x11, 0x22, 0x33};

i2c_Send(0x30, buf, 3); //write 3 bytes to an I2C device

 //with address 0x30

Master APIMaster API

 i2c_Receive(addr, buf, size)i2c_Receive(addr, buf, size): read a byte : read a byte

sequence from Isequence from I22C deviceC device

 addraddr: the I: the I22C device addressC device address

 bufbuf: the byte buffer to put read bytes: the byte buffer to put read bytes

 sizesize: the number of bytes to read: the number of bytes to read

unsigned char buf[3];

i2c_Receive(0x30, buf, 3); //read 3 bytes from an I2C

 //device with address 0x30

Master APIMaster API

 i2c_SensorRead(addr, cmd, buf, size)i2c_SensorRead(addr, cmd, buf, size): a general : a general

function used to read Ifunction used to read I22C sensor dataC sensor data

 Will first write Will first write cmdcmd to Ito I22C device, and then send IC device, and then send I22C C RESTARTRESTART

to read a byte sequence into to read a byte sequence into bufbuf

 addraddr: the I: the I22C device addressC device address

 cmdcmd: the byte to first write: the byte to first write

 Usually corresponds to a command of an IUsually corresponds to a command of an I22C sensorC sensor

 bufbuf: the byte buffer to put read bytes: the byte buffer to put read bytes

 sizesize: the number of bytes to read: the number of bytes to read

Master APIMaster API

 i2c_SensorReadEX(addr, cmd, csize, buf, size)i2c_SensorReadEX(addr, cmd, csize, buf, size): :

a general function used to read Ia general function used to read I22C sensor dataC sensor data

 Same as Same as i2c_SensorRead()i2c_SensorRead() except that except that cmdcmd is a byte array hereis a byte array here

 Used for the case where IUsed for the case where I22C sensor command is > 1 byteC sensor command is > 1 byte

 addraddr: the I: the I22C device addressC device address

 cmdcmd: the byte array to first write: the byte array to first write

 csizecsize: the number of bytes in : the number of bytes in cmdcmd

 bufbuf: the byte buffer to put read bytes: the byte buffer to put read bytes

 sizesize: the number of bytes to read: the number of bytes to read

Master APIMaster API

Master APIMaster API

unsigned char buf[2];

// first write 0x02 to an I2C device with address 0x70
// and then restart to read 2 bytes back
i2c_SensorRead(0x70, 0x02, buf, 2);

unsigned char cmd[2] = {0x32, 0x33};

unsigned char buf[6];

// first write 0x32 & 0x33 to an I2C device with address 0x53
// and then restart to read 6 bytes back
i2c_SensorReadEX(0x53, cmd, 2, buf, 6);

Remarks on IRemarks on I22C Device AddressC Device Address

 Some vendors describes their devices’ address as 8Some vendors describes their devices’ address as 8--bit bit

address of the form:address of the form:

 Ex.: the SRF08 ultrasonic sensor has addressEx.: the SRF08 ultrasonic sensor has address 0xE00xE0 (for read) (for read)

andand 0xE10xE1 (for write) by default.(for write) by default.

 The LSB of these addresses are actually the R/W bit.The LSB of these addresses are actually the R/W bit.

 When accessing such devices, you should put theWhen accessing such devices, you should put the 77--bit bit

slave addressslave address in RoBoIO Iin RoBoIO I22C API calls, rather than the C API calls, rather than the

88--bit address.bit address.

[7-bit slave address, R/W bit]

II22C ~ResetC ~Reset Pin of RBPin of RB--110/RB110/RB--050050

 Control of the Control of the ~Reset~Reset pin on Ipin on I22C connector of RBC connector of RB--

110/RB110/RB--050050

 i2c_SetResetPin()i2c_SetResetPin(): set : set ~Reset~Reset pin to output HIGHpin to output HIGH

 i2c_ClearResetPin()i2c_ClearResetPin(): set : set ~Reset~Reset pin to output LOWpin to output LOW

 By default, the BIOS will set By default, the BIOS will set ~Reset~Reset pin to HIGH pin to HIGH

after booting.after booting.

SoftwareSoftware--Simulated ISimulated I22CC

 From v1.8, RoBoIO includes S/WFrom v1.8, RoBoIO includes S/W--simulated Isimulated I22C C

functions to support nonfunctions to support non--standard Istandard I22C devices (e.g., C devices (e.g.,

LEGOLEGO®® NXT ultrasonic sensor).NXT ultrasonic sensor).

 Support only ISupport only I22C master modeC master mode

 Consider no IConsider no I22C arbitrationC arbitration

 i.e., assume there is only one master on the Ii.e., assume there is only one master on the I22C busC bus

 Output 3.3V as logic HIGHOutput 3.3V as logic HIGH

 Should ensure your devices accept 3.3V as inputShould ensure your devices accept 3.3V as input

SoftwareSoftware--Simulated ISimulated I22CC

 Usage overviewUsage overview

if (i2c_InitSW(i2c_mode, clock_delay)) {

 ……

 //you can use any master API here; e.g.,

 unsigned char buf[3] = {0x11, 0x22, 0x33};

 i2c_Send(0x53, buf, 3);

 i2c_SensorRead(0x53, 0x02, buf, 3);

 ……

 i2c_CloseSW(); //close S/W-simulated I2C

}

SoftwareSoftware--Simulated ISimulated I22CC

 Usage overview (cont.)Usage overview (cont.)

 i2c_modei2c_mode can becan be

 I2CSW_NORMALI2CSW_NORMAL: simulate standard I: simulate standard I22C protocolC protocol

 I2CSW_LEGOI2CSW_LEGO: simulate LEGO: simulate LEGO®® NXT INXT I22C protocolC protocol

 clock_delayclock_delay is any unsigned integer to control S/Wis any unsigned integer to control S/W--

simulated Isimulated I22C clock speed.C clock speed.

 For LEGOFor LEGO®® NXT sensors, the suggested NXT sensors, the suggested clock_delayclock_delay is 46 is 46

to achieve 9600bps.to achieve 9600bps.

 IfIf clock_delayclock_delay = 0, the clock speed is about 75Kbps.= 0, the clock speed is about 75Kbps.

II22C libC lib

(Advanced API)(Advanced API)

Advanced Master APIAdvanced Master API

 The most simple ones of all advanced IThe most simple ones of all advanced I22C Master APIC Master API

 i2c0master_StartN()i2c0master_StartN(): send : send STARTSTART signal to slave devicessignal to slave devices

 i2c0master_WriteN()i2c0master_WriteN(): write a byte to slave devices: write a byte to slave devices

 i2c0master_ReadN()i2c0master_ReadN(): read a byte from slave devices: read a byte from slave devices

 Automatically sendAutomatically send STOPSTOP signal after reading/writing the last bytesignal after reading/writing the last byte

i2c0master_StartN(0x30, //slave address = 0x30

 I2C_WRITE, //perform write action (use I2C_READ

 //instead for read action)

 3); //3 bytes to write

i2c0master_WriteN(0x11);

i2c0master_WriteN(0x22);

i2c0master_WriteN(0x33); //auto send STOP after this

Advanced Master APIAdvanced Master API

 SendSend RESTARTRESTART instead ofinstead of STOPSTOP

 Call Call i2c0master_SetRestartN()i2c0master_SetRestartN() before the first reading/writingbefore the first reading/writing

 Then Then RESTARTRESTART signal, instead of signal, instead of STOPSTOP, will be sent after , will be sent after

reading/writing the last bytereading/writing the last byte

i2c0master_StartN(0x30, I2C_WRITE, 2);

//set to RESTART for reading 1 bytes (after I2C writes)

i2c0master_SetRestartN(I2C_READ, 1);

i2c0master_WriteN(0x44);

i2c0master_WriteN(0x55); //auto send RESTART after this

data = i2c0master_ReadN(); //auto send STOP after this

Usage Overview: Slave ModeUsage Overview: Slave Mode

if (i2c_Init(speed_mode, bps)) {

 //set slave address (7-bit) as, e.g., 0x30

 i2c0slave_SetAddr(0x30);

 ……

 //Slave Event Loop here

 ……

 i2c_Close(); //close I2C lib

}

 This mode allows you to simulate RoBoard as an IThis mode allows you to simulate RoBoard as an I22C slave device.C slave device.

 In Slave Event Loop, you should use Slave API (rather than In Slave Event Loop, you should use Slave API (rather than

Master API) to listen and handle IMaster API) to listen and handle I22C bus events.C bus events.

Slave Event LoopSlave Event Loop

while (……) {

 switch (i2c0slave_Listen()) {

 case I2CSLAVE_START: //receive START signal

 //action for START signal

 break;

 case I2CSLAVE_WRITEREQUEST: //request slave to write

 //handle write request

 break;

 case I2CSLAVE_READREQUEST: //request slave to read

 //handle read request

 break;

 case I2CSLAVE_END: //receive STOP signal

 //action for STOP signal

 break;
 }

 …… //can do stuff here when listening

}

Slave Read/Write APISlave Read/Write API

 Call Call i2c0slave_Write()i2c0slave_Write() for sending a byte to masterfor sending a byte to master

 CallCall i2c0slave_Read()i2c0slave_Read() for reading a byte from masterfor reading a byte from master

……
case I2CSLAVE_WRITEREQUEST:
 i2c0slave_Write(byte_value);
 break;
……

……
case I2CSLAVE_READREQUEST:
 data = i2c0slave_Read();
 break;
……

RC Servo libRC Servo lib
(with GPIO functions)(with GPIO functions)

FeaturesFeatures

 Dedicated to Dedicated to PWMPWM--based based RC servosRC servos

 Employ RoBoard’s PWM generatorEmploy RoBoard’s PWM generator

 So don’t use RC Servo lib & PWM lib at the same timeSo don’t use RC Servo lib & PWM lib at the same time

 Can read the width of feedback pulsesCan read the width of feedback pulses

 Very accurate in DOS (Very accurate in DOS (1us1us))

 Occasionally miss accuracy in XP, CE, and Linux, when the OS Occasionally miss accuracy in XP, CE, and Linux, when the OS

is being overloadedis being overloaded

 Support GPIO (digital I/O) functionsSupport GPIO (digital I/O) functions

Usage OverviewUsage Overview

 ParametersParameters RCSERVO_USEPINS1RCSERVO_USEPINS1 ~~ RCSERVO_USEPINS24RCSERVO_USEPINS24

 Indicate which PWM pins are used as Indicate which PWM pins are used as Servo ModeServo Mode (for RB(for RB--110/ RB110/ RB--

050, 050, RCSERVO_USEPINS17RCSERVO_USEPINS17 ~ ~ RCSERVO_USEPINS24RCSERVO_USEPINS24 are invalid)are invalid)

 Other unused PWM pins will be set as Other unused PWM pins will be set as GPIO ModeGPIO Mode

……
//Configure servo setting (using Servo Configuration API) here
……
if (rcservo_Init(RCSERVO_USEPINS1 + RCSERVO_USEPINS2 + ……)) {

 ……
 //use Servo Manipulation API here

 ……
 rcservo_Close();

}

Usage OverviewUsage Overview

 Servo Configuration API allows to configure various servo Servo Configuration API allows to configure various servo

parameters.parameters.

 PWM period, max/min PWM dutyPWM period, max/min PWM duty

 Feedback timings for position captureFeedback timings for position capture

 …………

 ServoServo--mode pins allow three servo manipulation modes.mode pins allow three servo manipulation modes.

 Capture mode (for reading RC servo’s position feedback)Capture mode (for reading RC servo’s position feedback)

 Action playing mode (for playing userAction playing mode (for playing user--defined motions)defined motions)

 PWM mode (send PWM pulses for individual channels)PWM mode (send PWM pulses for individual channels)

Configure Servo SettingConfigure Servo Setting

 Method 1:Method 1: Use builtUse built--in parameters by callingin parameters by calling

 pinpin indicates which PWM pin to set, and can be indicates which PWM pin to set, and can be

RCSERVO_PINS1RCSERVO_PINS1 ~ ~ RCSERVO_PINS24RCSERVO_PINS24

 For RBFor RB--110/RB110/RB--050, 050, RCSERVO_PINS17RCSERVO_PINS17 ~ ~ RCSERVO_PINS24RCSERVO_PINS24 are are

invalid.invalid.

rcservo_SetServo(pin, servo_model)

Configure Servo SettingConfigure Servo Setting

 Method 1:Method 1: (cont.)(cont.)

 servo_modelservo_model indicates what servo is connected on the indicates what servo is connected on the

PWM pin, and can bePWM pin, and can be

 RCSERVO_KONDO_KRS78XRCSERVO_KONDO_KRS78X: for KONDO KRS: for KONDO KRS--786/788 servos786/788 servos

 RCSERVO_KONDO_KRS4024RCSERVO_KONDO_KRS4024: for KONDO KRS: for KONDO KRS--4024 servos4024 servos

 RCSERVO_KONDO_KRS4014RCSERVO_KONDO_KRS4014: for KONDO KRS: for KONDO KRS--4014 servos4014 servos

 KRS4014 doesn’t directly work on RBKRS4014 doesn’t directly work on RB--100/RB100/RB--110; see later 110; see later

slides for remarks.slides for remarks.

 RCSERVO_HITEC_HSR8498RCSERVO_HITEC_HSR8498: for HiTEC HSR: for HiTEC HSR--8498 servos8498 servos

Configure Servo SettingConfigure Servo Setting

 Method 1:Method 1: (cont.)(cont.)

 servo_modelservo_model can be (cont.)can be (cont.)

 RCSERVO_FUTABA_S3003RCSERVO_FUTABA_S3003: for Futaba S3003 servos: for Futaba S3003 servos

 RCSERVO_SHAYYE_SYS214050RCSERVO_SHAYYE_SYS214050: for Shayang Ye SYS: for Shayang Ye SYS--214050 214050

servosservos

 RCSERVO_TOWERPRO_MG995RCSERVO_TOWERPRO_MG995, , RCSERVO_TOWERPRO_MG996RCSERVO_TOWERPRO_MG996: for : for

TowerPro MG995 & MG996 servosTowerPro MG995 & MG996 servos

Configure Servo SettingConfigure Servo Setting

 Method 1:Method 1: (cont.)(cont.)

 servo_modelservo_model can be (cont.)can be (cont.)

 RCSERVO_GWS_S03TRCSERVO_GWS_S03T, , RCSERVO_GWS_S777RCSERVO_GWS_S777: for GWS S03T & : for GWS S03T &

S777 series servosS777 series servos

 RCSERVO_GWS_MICRORCSERVO_GWS_MICRO: for GWS MICRO series servos: for GWS MICRO series servos

 RCSERVO_DMP_RS0263RCSERVO_DMP_RS0263, , RCSERVO_DMP_RS1270RCSERVO_DMP_RS1270: for DMP RS: for DMP RS--

0263 & RS0263 & RS--1270 servos1270 servos

Configure Servo SettingConfigure Servo Setting

 Method 1:Method 1: (cont.)(cont.)

 servo_modelservo_model can be (cont.)can be (cont.)

 RCSERVO_SERVO_DEFAULTRCSERVO_SERVO_DEFAULT: attempt to adapt to various : attempt to adapt to various

servos of supporting position feedbackservos of supporting position feedback

 RCSERVO_SERVO_DEFAULT_NOFBRCSERVO_SERVO_DEFAULT_NOFB: similar to the above : similar to the above

option, but dedicated to servos with no feedbackoption, but dedicated to servos with no feedback

 Default option if you don’t set the servo model before callingDefault option if you don’t set the servo model before calling

rcservo_Init()rcservo_Init()

 If you don’t know which model your servos match, use If you don’t know which model your servos match, use

RCSERVO_SERVO_DEFAULT_NOFBRCSERVO_SERVO_DEFAULT_NOFB

//PWM pin S1 connects KONDO servo KRS-786/788

rcservo_SetServo(RCSERVO_PINS1, RCSERVO_KONDO_KRS78X);

//PWM pin S3 connects DMP servo RS-0263

rcservo_SetServo(RCSERVO_PINS3, RCSERVO_DMP_RS0263RCSERVO_DMP_RS0263);

//open RC Servo lib to control servos on pins S1 & S3
if (rcservo_Init(RCSERVO_USEPINS1 + RCSERVO_USEPINS3)) {
 ……
 //use Servo Manipulation API here
 ……
 rcservo_Close();
}

Configure Servo SettingConfigure Servo Setting

Configure Servo SettingConfigure Servo Setting

 Method 2:Method 2: Call parameterCall parameter--setting functions to set setting functions to set

customized parameterscustomized parameters

 In theory, using this method, we can adapt RC Servo lib In theory, using this method, we can adapt RC Servo lib

to any PWMto any PWM--based RC servos.based RC servos.

 It requires detailed servo knowledge, and we will It requires detailed servo knowledge, and we will

provide a document for this in the future.provide a document for this in the future.

Manipulate Servo: Capture ModeManipulate Servo: Capture Mode

 Call Call rcservo_EnterCaptureMode()rcservo_EnterCaptureMode() to enter this modeto enter this mode

 Capture mode is the initial mode of servoCapture mode is the initial mode of servo--mode pins mode pins

after callingafter calling rcservo_Init()rcservo_Init()

 Note: Servos with no feedback are not supported in this Note: Servos with no feedback are not supported in this

mode.mode.

 Available API in Capture modeAvailable API in Capture mode

 rcservo_CapOne(pin)rcservo_CapOne(pin): read position feedback from a : read position feedback from a

specified servospecified servo--mode pinmode pin

 return return 0xffffffffL0xffffffffL if fails to read feedback, or if the pin is if fails to read feedback, or if the pin is

connected to a servo with no feedbackconnected to a servo with no feedback

Manipulate Servo: Capture ModeManipulate Servo: Capture Mode

 Available API in Capture mode (cont.)Available API in Capture mode (cont.)

 rcservo_CapAll(frame)rcservo_CapAll(frame): read position feedback from : read position feedback from

all servoall servo--mode pinsmode pins

 frameframe is an array of 32 unsigned long integers, where is an array of 32 unsigned long integers, where

frame[0]frame[0] will give position feedback on pin S1; will give position feedback on pin S1; frame[1]frame[1]

on pin S2; and …on pin S2; and …

 frame[i]frame[i] will give will give 0xffffffffL0xffffffffL if fails to read feedback if fails to read feedback

on the corresponding pin, or if the servo is with no on the corresponding pin, or if the servo is with no

feedbackfeedback

 for RBfor RB--100/100RD,100/100RD, frame[24~31]frame[24~31] are reserved; for RBare reserved; for RB--

110/050, 110/050, frame[16~31]frame[16~31] are reserved.are reserved.

Manipulate Servo: Capture ModeManipulate Servo: Capture Mode

rcservo_EnterCaptureMode();

……

//read position feedback from PWM pin S3

unsigned long pos = rcservo_CapOne(RCSERVO_PINS3);

……

//read position feedback from all servo-mode pins

unsigned long motion_frame[32];

rcservo_CapAll(motion_frame);

printf(“position feedback on PWM pin S3 is

 equal to %lu microsecond\n”, motion_frame[2]);

Manipulate Servo: Capture ModeManipulate Servo: Capture Mode

 Available API in Capture mode (cont.)Available API in Capture mode (cont.)

 rcservo_ReadPositions()rcservo_ReadPositions(): read position feedback : read position feedback

from multiple specified servofrom multiple specified servo--mode pinsmode pins

//read position feedback from PWM pins S1 and S3

unsigned long motion_frame[32];

rcservo_ReadPositions(RCSERVO_USEPINS1 + RCSERVO_USEPINS3,

 0, //normally = 0

 motion_frame);

printf(“position feedback on PWM pins S1 and S3 are
 equal to %lu and %lu microseconds\n”,
 motion_frame[0], motion_frame[2]);

Manipulate Servo: Manipulate Servo:

Action Playing ModeAction Playing Mode

 Can replay the motion frames that are captured byCan replay the motion frames that are captured by

rcservo_CapAll()rcservo_CapAll()

 Methods to enter this modeMethods to enter this mode

 rcservo_EnterPlayMode()rcservo_EnterPlayMode(): for servos with feedback: for servos with feedback

 Will automatically capture the current pose as the initial motion Will automatically capture the current pose as the initial motion

frame (home position)frame (home position)

 Will reject moving servos that have no feedbackWill reject moving servos that have no feedback

 rcservo_EnterPlayMode_HOME(home)rcservo_EnterPlayMode_HOME(home): for servos with no : for servos with no

feedbackfeedback

 homehome is an array of 32 unsigned long integers which indicates the is an array of 32 unsigned long integers which indicates the

initial motion frame.initial motion frame.

Manipulate Servo: Manipulate Servo:

Action Playing ModeAction Playing Mode

 Entering Playing Mode, all servoEntering Playing Mode, all servo--mode pins will send mode pins will send

PWM pulses continuously.PWM pulses continuously.

 In general, this will make all connected servos powered In general, this will make all connected servos powered

always.always.

 To stop the pulses, just leave Playing Mode by, e.g., To stop the pulses, just leave Playing Mode by, e.g.,

calling calling rcservo_EnterCaptureMode()rcservo_EnterCaptureMode()

Manipulate Servo: Manipulate Servo:

Action Playing ModeAction Playing Mode

 Blocking API in Action playing modeBlocking API in Action playing mode

 rcservo_MoveOne(pin, pos, time)rcservo_MoveOne(pin, pos, time): move a servo : move a servo

until it reach the target positionuntil it reach the target position

 rcservo_MoveTo(frame, time)rcservo_MoveTo(frame, time): move all servos : move all servos

until they reach to the next motion frameuntil they reach to the next motion frame

 frame[0]frame[0] indicates target position for servo on pin S1; indicates target position for servo on pin S1;

frame[1]frame[1] for pin S2; and …for pin S2; and …

 frame[i] = 0Lframe[i] = 0L indicates the corresponding servo to indicates the corresponding servo to

remain at its last position.remain at its last position.

Manipulate Servo: Manipulate Servo:

Action Playing ModeAction Playing Mode

rcservo_EnterPlayMode();
……
//move servo on PWM pin S2 to position 1500us in 500ms
rcservo_MoveOne(RCSERVO_PINS2, 1500L, 500);

rcservo_EnterPlayMode();
……
//move simultaneously both servos on PWM pins S1 and S3 to
//position 1500us in 500ms

unsigned long motion_frame[32] = {0L};

motion_frame[0] = 1500L;
motion_frame[2] = 1500L;
rcservo_MoveTo(motion_frame, 500);

Manipulate Servo: Manipulate Servo:

Action Playing ModeAction Playing Mode

 NonNon--blocking API in Action playing modeblocking API in Action playing mode

 rcservo_SetAction(frame, time)rcservo_SetAction(frame, time): set the next : set the next

motion framemotion frame

 Can be called, before the following function returns Can be called, before the following function returns

RCSERVO_PLAYENDRCSERVO_PLAYEND, to change the target positions, to change the target positions

 rcservo_PlayAction()rcservo_PlayAction(): push all servos to reach : push all servos to reach

the frame that was set by the frame that was set by rcservo_SetAction()rcservo_SetAction()

 Must callMust call rcservo_PlayAction()rcservo_PlayAction() repeatedly until it repeatedly until it

returnsreturns RCSERVO_PLAYENDRCSERVO_PLAYEND (which indicates that all servos (which indicates that all servos

have reached the target)have reached the target)

Manipulate Servo: Manipulate Servo:

Action Playing ModeAction Playing Mode

rcservo_EnterPlayMode();

……

unsigned long motion_frame[32] = {0L};

//here set up the content of motion_frame[] for playing

……

rcservo_SetAction(motion_frame, 500); //play motion in 500ms

while (rcservo_PlayAction() != RCSERVO_PLAYEND) {

 //

 //can do stuff here when playing motion

 //

}

Manipulate Servo: Manipulate Servo:

Action Playing ModeAction Playing Mode

 NonNon--blocking API (cont.)blocking API (cont.)

 rcservo_StopAction()rcservo_StopAction(): stop playing the motion : stop playing the motion

frame immediatelyframe immediately

 rcservo_PlayAction()rcservo_PlayAction() will return will return RCSERVO_PLAYENDRCSERVO_PLAYEND after after

calling thiscalling this

 rcservo_GetAction(buf)rcservo_GetAction(buf): get the current : get the current

positions of all servospositions of all servos

 buf[0]buf[0] will give the position of servo on pin S1; will give the position of servo on pin S1; buf[1]buf[1] on on

pin S2; and …pin S2; and …

Manipulate Servo: Manipulate Servo:

Action Playing ModeAction Playing Mode

rcservo_EnterPlayMode();

……

unsigned long buf[32];

unsigned long motion_frame[32] = {0L};

//here set up the content of motion_frame[] for playing

……

rcservo_SetAction(motion_frame, 500); //play motion in 500ms

while (rcservo_PlayAction() != RCSERVO_PLAYEND) {

 rcservo_GetAction(buf);

 printf(“Servo on pin S1 is moving to %lu\n”, buf[0]);

}

Manipulate Servo: PWM ModeManipulate Servo: PWM Mode

 CallCall rcservo_EnterPWMMode()rcservo_EnterPWMMode() to enter this modeto enter this mode

 In this mode, all servoIn this mode, all servo--mode pins output 0V if no pulse mode pins output 0V if no pulse

is sent.is sent.

 Available API in PWM modeAvailable API in PWM mode

 rcservo_SendPWM()rcservo_SendPWM(): send a given number of pulses : send a given number of pulses

with specific duty and periodwith specific duty and period

 rcservo_IsPWMCompleted()rcservo_IsPWMCompleted(): return true when all : return true when all

pulses have been sent outpulses have been sent out

Manipulate Servo: PWM ModeManipulate Servo: PWM Mode

rcservo_EnterPWMMode();

……

unsigned long PWM_period = 10000L; //10000us

unsigned long PWM_duty = 1500L; //1500us

unsigned long count = 100L;

rcservo_SendPWM(pin, //RCSERVO_PINS1 or RCSERVO_PINS2 or ……

 PWM_period, PWM_duty, count);

while (!rcservo_IsPWMCompleted(pin)) {

 //

 //can do stuff here when waiting for PWM completed

 //

}

Manipulate Servo: PWM ModeManipulate Servo: PWM Mode

 Available API in PWM mode (cont.)Available API in PWM mode (cont.)

 rcservo_SendCPWM()rcservo_SendCPWM(): send continuous pulses with : send continuous pulses with

specific duty and periodspecific duty and period

 rcservo_StopPWM()rcservo_StopPWM(): stop the pulses caused by : stop the pulses caused by

rcservo_SendPWM()rcservo_SendPWM()//rcservo_SendCPWM()rcservo_SendCPWM()

 rcservo_CheckPWM()rcservo_CheckPWM(): return the remaining number of : return the remaining number of

pulses to sendpulses to send

 return return 0L0L if pulses have stoppedif pulses have stopped

 return return 0xffffffffL0xffffffffL for continuous pulsesfor continuous pulses

Manipulate Servo: PWM ModeManipulate Servo: PWM Mode

rcservo_EnterPWMMode();

……

unsigned long PWM_period = 10000L; //10000us

unsigned long PWM_duty = 1500L; //1500us

rcservo_SendCPWM(pin, //RCSERVO_PINS1 or RCSERVO_PINS2 or ……

 PWM_period, PWM_duty);

……

//do something when sending PWM

……

rcservo_StopPWM(pin);

GPIO FunctionsGPIO Functions

 API to control GPIOAPI to control GPIO--mode pinsmode pins

 rcservo_OutPin(pin, value)rcservo_OutPin(pin, value): set GPIO: set GPIO--mode pin to mode pin to

output HIGH or LOWoutput HIGH or LOW

 pinpin = = RCSERVO_PINS1RCSERVO_PINS1 or or RCSERVO_PINS2RCSERVO_PINS2 or ……or ……

 valuevalue = = 00 (output LOW) or (output LOW) or 11 (output HIGH)(output HIGH)

 rcservo_InPin(pin)rcservo_InPin(pin): read input from GPIO pin: read input from GPIO pin

 Return Return 00 if it read LOW, and if it read LOW, and 11 if it read HIGHif it read HIGH

 The API will do nothing if The API will do nothing if pinpin is a servois a servo--mode pin.mode pin.

BIOS Setting for RC ServosBIOS Setting for RC Servos

 Some RC servos (e.g., KONDO KRSSome RC servos (e.g., KONDO KRS--788) require 788) require

the PWM input signal = LOW at power on.the PWM input signal = LOW at power on.

 Configure RoBoard’s PWM pins to achieve thisConfigure RoBoard’s PWM pins to achieve this

 STEP 1: Switch theSTEP 1: Switch the pullpull--up/pullup/pull--down switchdown switch to “pullto “pull--

down”down”

 STEP 2: Go to BIOS ChipsetSTEP 2: Go to BIOS Chipset menumenu

 STEP 3: SelectSTEP 3: Select SouthBridge Configuration SouthBridge Configuration 

MultiMulti--Function Port ConfigurationFunction Port Configuration

BIOS Setting for RC ServosBIOS Setting for RC Servos

 Configure RoBoard’s PWM pins … (cont.)Configure RoBoard’s PWM pins … (cont.)

 STEP 4: SetSTEP 4: Set Port0 Bit0~7Port0 Bit0~7, , Port1 Bit0~7Port1 Bit0~7, , Port2 Port2

Bit0~7(only for RBBit0~7(only for RB--100/100RD)100/100RD), , Port3 Bit6Port3 Bit6 as as Output [0]Output [0]

 Can also set RoBoard’s PWM pins = HIGH at power onCan also set RoBoard’s PWM pins = HIGH at power on

 Just switch theJust switch the pullpull--up/pullup/pull--down switchdown switch to “pullto “pull--up”up”

Remarks for KONDO KRSRemarks for KONDO KRS--40144014

 KRSKRS--4014 servos also require PWM = LOW at 4014 servos also require PWM = LOW at

power on.power on.

 But the former pullBut the former pull--up/up/--down setting is not enough to down setting is not enough to

make KRSmake KRS--4014 work on RB4014 work on RB--100/RB100/RB--110.110.

 You also need to power on KRSYou also need to power on KRS--4014 and RB4014 and RB--100/RB100/RB--110 110

at different time.at different time.

 This implies that you need to powerThis implies that you need to power--supply the both supply the both

separately.separately.

Remarks for KONDO KRSRemarks for KONDO KRS--40144014

 Example: Make KRSExample: Make KRS--4014 work on RB4014 work on RB--110.110.

 STEP 1: turn on the systemSTEP 1: turn on the system

 power of RoBoard firstpower of RoBoard first

 STEP 2: wait the BIOS STEP 2: wait the BIOS

 screen appearedscreen appeared

 STEP 3: turn on the servoSTEP 3: turn on the servo

 power for KRSpower for KRS--40144014

PWM libPWM lib

PWM lib UsagePWM lib Usage

 Allow users to employ complete RoBoard’s PWM Allow users to employ complete RoBoard’s PWM

featuresfeatures

 Control polarity of PWM waveformControl polarity of PWM waveform

 Control PWM resolution (maximum resolution = Control PWM resolution (maximum resolution = 20ns20ns))

 Enable PWM interruptEnable PWM interrupt

 …………

PWM lib UsagePWM lib Usage

 See See pwm.hpwm.h and and pwmdx.hpwmdx.h for available API.for available API.

 To use PWM lib, a detailed understanding of RoBoard’s To use PWM lib, a detailed understanding of RoBoard’s

H/W PWM functions is required.H/W PWM functions is required.

 WARNING!WARNING! Do not use PWM lib when RC Servo Do not use PWM lib when RC Servo

lib is in use.lib is in use.

 You should use PWM functions of RC Servo lib instead.You should use PWM functions of RC Servo lib instead.

COM PortsCOM Ports

RoBoard Native COM PortsRoBoard Native COM Ports

 COM1~COM4 can be used as standard COM ports in COM1~COM4 can be used as standard COM ports in

WinXP, Linux, and DOSWinXP, Linux, and DOS

 Max speedMax speed

 RBRB--100: 100: 115200115200 bpsbps

 RBRB--100RD/RB100RD/RB--110/RB110/RB--050: 050: 748800 748800 bpsbps

 Can customize each native COM port in BIOSCan customize each native COM port in BIOS

 IRQIRQ

 I/O base addressI/O base address

 Default speedDefault speed

Boosting Mode of RBBoosting Mode of RB--100RD/110/050 100RD/110/050

Native COM PortsNative COM Ports

 RBRB--100RD/RB100RD/RB--110/RB110/RB--050’s native COM ports support 050’s native COM ports support

baudrates up to 750K bps, provided that COM boosting baudrates up to 750K bps, provided that COM boosting

mode is enabled.mode is enabled.

 When boosting mode enabled,When boosting mode enabled,

 For example, if boosting mode of COM3 is enabled and its For example, if boosting mode of COM3 is enabled and its

baudrate is set to 38400 bps, the real baudrate is 38400 baudrate is set to 38400 bps, the real baudrate is 38400  13 = 13 =

500K bps.500K bps.

 In boosting mode, the maximum baudrate is 57600 In boosting mode, the maximum baudrate is 57600  13 = 13 =

750Kbps (115200 750Kbps (115200  13 is not allowed)13 is not allowed)

the real baudrate = 13  the original baudrate

How to Enable Boosting Mode of RBHow to Enable Boosting Mode of RB--

100RD/110/050 Native COM Ports100RD/110/050 Native COM Ports

 Method 1:Method 1: Using BIOSUsing BIOS

 STEP 1: Go to RBSTEP 1: Go to RB--100RD/110/050 BIOS 100RD/110/050 BIOS ChipsetChipset menumenu

 STEP 2: Select STEP 2: Select SouthBridge ConfigurationSouthBridge Configuration → →

 Serial/Parallel Port ConfigurationSerial/Parallel Port Configuration

 STEP 3: Select the COM portSTEP 3: Select the COM port

 that you want to boostthat you want to boost

 STEP 4: Set its baudrate to STEP 4: Set its baudrate to

 any speed any speed  115200 bps115200 bps

How to Enable Boosting Mode of RBHow to Enable Boosting Mode of RB--

100RD/110/050 Native COM Ports100RD/110/050 Native COM Ports

 Method 2:Method 2: Using Using rbcom.exerbcom.exe in RoBoKit.in RoBoKit.

 Run Run rbcom.exerbcom.exe directly to see its usagedirectly to see its usage

 Method 3:Method 3: Using the isolated API of COM lib (refer to Using the isolated API of COM lib (refer to

the later COM lib slides)the later COM lib slides)

io_init();

……

com2_EnableTurboMode(); //enable COM2 boosting mode

……

com4_DisableTurboMode(); //disable COM4 boosting mode

……

io_close();

RBRB--110 FTDI COM Ports110 FTDI COM Ports

 COM5 & COM6 of RBCOM5 & COM6 of RB--110 are realized by its on110 are realized by its on--

board FTDI FT2232H chip.board FTDI FT2232H chip.

 So require to install dedicated drivers for their usageSo require to install dedicated drivers for their usage

 See also See also RBRB--110 WinXP/Linux installation guide110 WinXP/Linux installation guide for more for more

information.information.

 Detailed application notes for FTDI FT2232H can be Detailed application notes for FTDI FT2232H can be

found on FTDI’s web site:found on FTDI’s web site:

 http://www.ftdichip.com/Support/FTDocuments.htmhttp://www.ftdichip.com/Support/FTDocuments.htm

FTDI COM vs. Native COMFTDI COM vs. Native COM

 FTDI COM allows faster baudrates than RoBoard’s FTDI COM allows faster baudrates than RoBoard’s

native COM.native COM.

 But FTDI COM has also much longer latency But FTDI COM has also much longer latency

between two packet transmission.between two packet transmission.

 In transmitting multiple packets, FTDI COM may be In transmitting multiple packets, FTDI COM may be

slower than native COM due to its latency.slower than native COM due to its latency.

 You should experiment to see which COM is more You should experiment to see which COM is more

suitable to your application.suitable to your application.

FTDI COM vs. Native COMFTDI COM vs. Native COM

 Example of FTDI COM vs. Native COMExample of FTDI COM vs. Native COM

RB-110 (native) COM3 at

500Kbps sends 3 bytes

Byte 1

Byte 2

Byte 3

RB-110 (FTDI) COM5 at

1Mbps sends 3 bytes

Byte 1

Byte 2 Byte 3

COM libCOM lib

Usage OverviewUsage Overview

 From RoBoIO 1.8, we add COM lib toFrom RoBoIO 1.8, we add COM lib to

 make users easier to handle H/W features (e.g., boosting mode) make users easier to handle H/W features (e.g., boosting mode)

of RoBoard’s native COM portsof RoBoard’s native COM ports

 provide a simple and unified serial API for various OSprovide a simple and unified serial API for various OS

 Currently only support WinXP, WinCE, LinuxCurrently only support WinXP, WinCE, Linux

 Note that COM lib only deals with RoBoard’s native Note that COM lib only deals with RoBoard’s native

COM, i.e., COM1~COM4. COM, i.e., COM1~COM4.

 So RBSo RB--110’s COM5 & COM6 aren’t considered.110’s COM5 & COM6 aren’t considered.

Usage OverviewUsage Overview

 The API has different prefixes for different COM ports.The API has different prefixes for different COM ports.

 com1_...com1_... for COM1for COM1

 com2_...com2_... for COM2for COM2

 com3_...com3_... for COM3for COM3

 com4_...com4_... for COM4for COM4

 Following slides shall only mention COM3 API for Following slides shall only mention COM3 API for

illustration.illustration.

Usage OverviewUsage Overview

 modemode can becan be

 COM_FDUPLEXCOM_FDUPLEX: this port is used as a full: this port is used as a full--duplex COM (invalid for COM2 and duplex COM (invalid for COM2 and

RBRB--100/100RD’s COM4)100/100RD’s COM4)

 COM_HDUPLEXCOM_HDUPLEX: this port is used as a half: this port is used as a half--duplex COM (invalid for COM1)duplex COM (invalid for COM1)

 Select this if you short the TX/RX lines of COM3Select this if you short the TX/RX lines of COM3

if (com3_Init(mode)) {

 com3_SetBaud(……); //optional

 com3_SetFormat(……); //optional

 ……
 //use COM lib API here

 ……
 com3_Close();

}

 com3_SetBaud(baudrate)com3_SetBaud(baudrate): set the baudrate; : set the baudrate; baudratebaudrate

can becan be

 COMBAUD_748800BPSCOMBAUD_748800BPS: 750Kbps (invalid for RB: 750Kbps (invalid for RB--100)100)

 COMBAUD_499200BPSCOMBAUD_499200BPS: 500Kbps (invalid for RB: 500Kbps (invalid for RB--100)100)

 COMBAUD_115200BPSCOMBAUD_115200BPS: 115200bps: 115200bps

 COMBAUD_9600BPSCOMBAUD_9600BPS: 9600bps: 9600bps

 …… (See…… (See com.hcom.h for all available baudrates)for all available baudrates)

 The default baudrate is 115200bps when calling The default baudrate is 115200bps when calling

com3_Init()com3_Init()..

BaudrateBaudrate

 com3_SetFormat(bytesize, stopbit, parity)com3_SetFormat(bytesize, stopbit, parity): set : set

the data formatthe data format

 bytesizebytesize can becan be

 COM_BYTESIZE5COM_BYTESIZE5: byte size = 5 bits: byte size = 5 bits

 COM_BYTESIZE6COM_BYTESIZE6: byte size = 6 bits: byte size = 6 bits

 COM_BYTESIZE7COM_BYTESIZE7: byte size = 7 bits: byte size = 7 bits

 COM_BYTESIZE8COM_BYTESIZE8: byte size = 8 bits: byte size = 8 bits

 stopbitstopbit can becan be

 COM_STOPBIT1COM_STOPBIT1: 1 stop bit: 1 stop bit

 COM_STOPBIT2COM_STOPBIT2: 2 stop bit: 2 stop bit

Data FormatData Format

 com3_SetFormat(…)com3_SetFormat(…): (cont.): (cont.)

 parityparity can becan be

 COM_NOPARITYCOM_NOPARITY: no parity bit: no parity bit

 COM_ODDPARITYCOM_ODDPARITY: odd parity: odd parity

 COM_EVENPARITYCOM_EVENPARITY: even parity: even parity

 The default data format is 8The default data format is 8--bit data, 1 stop bit, no bit data, 1 stop bit, no

parity when calling parity when calling com3_Init()com3_Init()..

Data FormatData Format

 com3_Write(byte)com3_Write(byte): write a byte to COM3: write a byte to COM3

 com3_Send(buf, size)com3_Send(buf, size): write a byte sequence to : write a byte sequence to

COM3COM3

 bufbuf: the byte array to write: the byte array to write

 sizesize: the number of bytes to write: the number of bytes to write

unsigned char buf[3] = {0x11, 0x22, 0x33};

com3_Send(buf, 3); //write 3 bytes to COM3

Write APIWrite API

com3_Write(0x55); //write 0x55 to COM3

 com3_ClearWFIFO()com3_ClearWFIFO(): cancel all bytes in write: cancel all bytes in write--FIFOFIFO

 com3_FlushWFIFO()com3_FlushWFIFO(): wait until all bytes in write: wait until all bytes in write--FIFO FIFO

are sent outare sent out

unsigned char buf[4] = {0xff, 0x01, 0x02, 0x01};

com3_Send(buf, 4); //write 4 bytes to COM3

com3_FlushWFIFO(); //wait until these bytes are sent out

Write APIWrite API

 com3_Read()com3_Read(): read a byte from COM3: read a byte from COM3

 return return 0xffff0xffff if timeoutif timeout

 com3_Receive(buf, size)com3_Receive(buf, size): read a byte sequence : read a byte sequence

from COM3from COM3

 bufbuf: the byte buffer to put read bytes: the byte buffer to put read bytes

 sizesize: the number of bytes to read: the number of bytes to read

unsigned char buf[3];

com3_Receive(buf, 3); //read 3 bytes from COM3

Read APIRead API

unsigned int data = com3_Read();

 com3_ClearRFIFO()com3_ClearRFIFO(): discard all bytes in read: discard all bytes in read--FIFOFIFO

 com3_QueryRFIFO()com3_QueryRFIFO(): query the number of bytes in : query the number of bytes in

readread--FIFOFIFO

unsigned char buf[4];

while (com3_QueryRFIFO() < 4); //wait until there are

 //4 bytes in read-FIFO

com3_Receive(buf, 4); //read the 4 bytes from read-FIFO

Read APIRead API

 com3_ServoTRX(cmd, csize, buf, size)com3_ServoTRX(cmd, csize, buf, size): send : send

servo command to and then read feedback data from servo command to and then read feedback data from

COM3COM3

 cmdcmd: the byte array to send first: the byte array to send first

 csizecsize: the number of bytes in : the number of bytes in cmdcmd

 bufbuf: the byte buffer to put read bytes: the byte buffer to put read bytes

 sizesize: the number of bytes to read: the number of bytes to read

Special API for AI ServosSpecial API for AI Servos

Special API for AI ServosSpecial API for AI Servos

unsigned char cmd[6] = {0xff, 0xff, 0x01, 0x02, 0x01, 0xfb};
unsigned char buf[6];

// ping Dynamixel AX-12 servo of ID 0x01
com3_ServoTRX(cmd, 6, buf, 6);

printf(“The feedback of AX-12 is ”);

for (int i = 0; i < 6; i++)

 printf(“%d ”, buf[i]);

printf(“\n”);

Isolated APIIsolated API

 There are isolated API that can work without There are isolated API that can work without

com3_Init()com3_Init() & & com3_Close()com3_Close()

 com3_EnableTurboMode()com3_EnableTurboMode(): enable COM3’s boosting : enable COM3’s boosting

mode (invalid for RBmode (invalid for RB--100)100)

 com3_DisableTurboMode()com3_DisableTurboMode(): disable COM3’s boosting : disable COM3’s boosting

mode (invalid for RBmode (invalid for RB--100)100)

 Isolated API are usually used with external serialIsolated API are usually used with external serial--

port libraries.port libraries.

 Usage 1: (without Usage 1: (without com3_Init()com3_Init() & & com3_Close()com3_Close()))

 will reserve the change made by isolated API even when the will reserve the change made by isolated API even when the

program exitprogram exit

 Note that except isolated API, you shouldn’t mix COM lib Note that except isolated API, you shouldn’t mix COM lib

with other serial lib (i.e., after you call with other serial lib (i.e., after you call com3_Init()com3_Init(), don’t use , don’t use

other serial lib to access COM3).other serial lib to access COM3).

Isolated APIIsolated API

io_init(…);

……

com3_EnableTurboMode(); //set COM3 into boosting mode

……

io_close(); //the boosting-mode setting would be reserved

 Usage 2: (with Usage 2: (with com3_Init()com3_Init() & & com3_Close()com3_Close()))

 will restore the change made by the isolated APIwill restore the change made by the isolated API

 This is not the recommended usage of isolated API.This is not the recommended usage of isolated API.

Isolated APIIsolated API

com3_Init(…);

……

com3_EnableTurboMode(); //set COM3 into boosting mode

……

com3_Close(); //will restore COM3’s original

 //boosting-mode setting after this

InstallationInstallation
(for Visual Studio 2005/2008)(for Visual Studio 2005/2008)

Setup in VS2005/2008Setup in VS2005/2008

 Decompose RoBoIO bin zipDecompose RoBoIO bin zip--file to, e.g.,file to, e.g., C:C:\\RoBoardRoBoard

 ExamplesExamples:: sample codes for RoBoIO librarysample codes for RoBoIO library

 IncludeInclude:: include files of RoBoIO libraryinclude files of RoBoIO library

 LibLib:: binary files of RoBoIO librarybinary files of RoBoIO library

 WinioWinio:: needed when using RoBoIO under WinXPneeded when using RoBoIO under WinXP

Setup in VS2005/2008Setup in VS2005/2008

 Setting RoBoIO in your VC2005/2008 projectSetting RoBoIO in your VC2005/2008 project

Setup in VS2005/2008Setup in VS2005/2008

 Setting RoBoIO in your VC2005/2008 project (cont.)Setting RoBoIO in your VC2005/2008 project (cont.)

 If using the static versionIf using the static version

 VC2005/2008 compatibilityVC2005/2008 compatibility: need to use the correct version : need to use the correct version

of of liblib files for VC2005 & VC2008files for VC2005 & VC2008

Setup in VS2005/2008Setup in VS2005/2008

 Setting RoBoIO in your VC2005/2008 project (cont.)Setting RoBoIO in your VC2005/2008 project (cont.)

 If using the DLL versionIf using the DLL version

 The DLL version uses the The DLL version uses the stdcallstdcall calling convention calling convention

(compatible to VB, C#, Java, Matlab, LabVIEW, and)(compatible to VB, C#, Java, Matlab, LabVIEW, and)

Setup in VS2005/2008Setup in VS2005/2008

 If you use .NETIf you use .NET

Setup in VS2005/2008Setup in VS2005/2008

 To run your RoBoIO application on WinXP:To run your RoBoIO application on WinXP:

1.1. First install First install VC2005/2008 SP1 redistributable packageVC2005/2008 SP1 redistributable package in in

RoBoardRoBoard

2.2. Copy your application to RoBoard’s storage (the Copy your application to RoBoard’s storage (the

MicroSD or USB storage)MicroSD or USB storage)

3.3. Copy all files inCopy all files in RoBoardRoBoard\\WinioWinio to your application to your application

directory, or Window’s directory, or Window’s System32System32 (for .dll file) & (for .dll file) &

System32System32\\DriversDrivers (for .sys file) directories on RoBoard(for .sys file) directories on RoBoard

Setup in VS2005/2008Setup in VS2005/2008

 Some RemarksSome Remarks

 RoBoIO recognizes RoBoard’s CPU, and doesn’t run on RoBoIO recognizes RoBoard’s CPU, and doesn’t run on

other PC.other PC.

 It is suggested to login WinXP with administrator It is suggested to login WinXP with administrator

account for running RoBoIO applications.account for running RoBoIO applications.

 Don’t run RoBoIO applications on Network Disk, Don’t run RoBoIO applications on Network Disk,

which may fail RoBoIO.which may fail RoBoIO.

Setup in VS2005/2008Setup in VS2005/2008

 If you want to develop WinCE RoBoIO applicationIf you want to develop WinCE RoBoIO application

 Download Download Vortex86DX WinCE 6.0 SDKVortex86DX WinCE 6.0 SDK from RoBoard website, from RoBoard website,

and install it.and install it.

 In VS Smart Device Project Wizard, select Vortex86DX_SDK:In VS Smart Device Project Wizard, select Vortex86DX_SDK:

Setup in VS2005/2008Setup in VS2005/2008

 Note that the filenames are different for WinCE.Note that the filenames are different for WinCE.

 static versionstatic version

 DLL versionDLL version

InstallationInstallation
(for Linux)(for Linux)

Setup in LinuxSetup in Linux

 Make the RoBoIO libMake the RoBoIO lib

 STEP 1: Ensure the gcc environment has been installed.STEP 1: Ensure the gcc environment has been installed.

 As an example, in Ubuntu 9.0.4, you can typeAs an example, in Ubuntu 9.0.4, you can type

 to install a gcc environment for RoBoIO compilation.to install a gcc environment for RoBoIO compilation.

sudo apt-get install libncurses5-dev
sudo apt-get install gcc g++ make

Setup in LinuxSetup in Linux

 Make the RoBoIO lib (cont.)Make the RoBoIO lib (cont.)

 STEP 2: Decompress the RoBoIO linux src to a directory.STEP 2: Decompress the RoBoIO linux src to a directory.

 STEP 3: Going into the directory with STEP 3: Going into the directory with MakefileMakefile, type , type

 and you will get the static RoBoIO lib: and you will get the static RoBoIO lib: libRBIO.alibRBIO.a

 Remarks: You should login with root to run Remarks: You should login with root to run
RoBoIO applications.RoBoIO applications.

make

InstallationInstallation
(Other Platforms)(Other Platforms)

Other Supported PlatformsOther Supported Platforms

 If you need to setup RoBoIO in the following If you need to setup RoBoIO in the following

platforms, please email to platforms, please email to tech@roboard.comtech@roboard.com

 DJGPPDJGPP

 Watcom C++Watcom C++

 Borland C++ 3.0~5.02Borland C++ 3.0~5.02

mailto:tech@roboard.com

ApplicationsApplications

IntroductionIntroduction

 x86x86--basedbased  Almost all resources on PC can be Almost all resources on PC can be

employed as development tools of RoBoard.employed as development tools of RoBoard.

 Languages:Languages: C/C++/C#, Visual Basic, Java, Python, C/C++/C#, Visual Basic, Java, Python,

LabVIEW, …LabVIEW, …

 Libraries:Libraries: OpenCV, SDL, LAPACK, …OpenCV, SDL, LAPACK, …

 IDE:IDE: Visual Studio, DevVisual Studio, Dev--C++, Eclipse, …C++, Eclipse, …

 GUI (if needed):GUI (if needed): Windows Forms, GTK, …Windows Forms, GTK, …

IntroductionIntroduction

 Rich I/O interfacesRich I/O interfaces  Various sensors & devices Various sensors & devices

can be employed as RoBoard’s senses.can be employed as RoBoard’s senses.

 A/D, SPI, IA/D, SPI, I22C:C: accelerometer, gyroscope, …accelerometer, gyroscope, …

 COM:COM: GPS, AI servos, …GPS, AI servos, …

 PWM:PWM: RC servos, DC motors, …RC servos, DC motors, …

 GPIO:GPIO: bumper, infrared sensors, on/off switches, …bumper, infrared sensors, on/off switches, …

 USB:USB: webcam, …webcam, …

 Audio in/out:Audio in/out: speech interfacespeech interface

IntroductionIntroduction

Rich I/O (using RoBoIO) + Rich
resources on PC

Can develop robots more easily and
rapidly

ExperiencesExperiences

 Mobile robot controlled by wireless joystickMobile robot controlled by wireless joystick

 RoBoIO library + Allegro game libraryRoBoIO library + Allegro game library

 Take < 20 minutes to complete the control programTake < 20 minutes to complete the control program

ExperiencesExperiences

 KONDO manipulator with object tracking & face KONDO manipulator with object tracking & face

recognitionrecognition

 RoBoIO library + OpenCV libraryRoBoIO library + OpenCV library

 Take < 3 hours to complete the programTake < 3 hours to complete the program

ExperiencesExperiences

 RoBoRC control program for KONDO humanoid RoBoRC control program for KONDO humanoid
(motion capture/replay, script control, MP3 voice, compressed data files)(motion capture/replay, script control, MP3 voice, compressed data files)

 RoBoIO library + irrKlang library + zziplib libraryRoBoIO library + irrKlang library + zziplib library

 Take < 5 days to complete the programTake < 5 days to complete the program

ExperiencesExperiences

 Teleoperation of Veltrobot humanoid by VeltropTeleoperation of Veltrobot humanoid by Veltrop

 RoBoIO library + ROS + KinectRoBoIO library + ROS + Kinect

 http://www.youtube.com/watch?v=GdSfLyZl4N0http://www.youtube.com/watch?v=GdSfLyZl4N0

 http://www.youtube.com/watch?v=kPzv3Je2Qmshttp://www.youtube.com/watch?v=kPzv3Je2Qms

Thank YouThank You

tech@roboard.com

