86DuUIND

EduCake Getting Started — Digital I/O

1. Introduction to EduCake and Integrated I/O

As part of today’s modern living, there are broad ranges of microcontroller being
used as part of the product all around our home and work place, such as electronic toy,
appliance, remote control and entertainment system at home, and automated assembly
system and other automation control at the work place. To the general public not
working in the computer electronic and related field, learning to use these
micro-controller and SoC is a difficult challenge, which require knowledge about how
different type of electronic components work, knowing how to work with electronic
schematic layout and perform complex low-level programming which take enormous
times and efforts to learn. Many beginners attempting to learn are discouraged by

the difficult challenge, lack of resources and give up along the way.

To address the difficulty in learning and using microcontroller, a team in Italy
created the Arduino platform to help beginner learn and use microcontroller
technology with a simple and easy to learn development environment. Released as
an open-source platform, the Arduino platform gains popularity quickly and is being
used by technical and non-technical hobbyist, professional and academic developers
around the world. As an open-source platform, many Arduino communities and user
groups are formed in different region and created large pool of technical resources,
covering both hardware and software, in different languages. As the Arduino
platform evolves, it becomes one of the popular platform for the academic and

hobbyist communities.

Created by DMP Electronic, a company based in Taiwan, the 86Duino series of
hardware is designed with Arduino compatible electronic interface, built with the

following features:
> 300MHz 32-bit system-on-chip with an x86 CPU core
> 128MB DDR3 system memory

> 10/100 high speed Ethernet

86DUIND
> Two USB 2.0 interfaces
> Micro-SD
> Open-Source Hardware
> Support DOS, Windows, Linux

> Provide an integrated development environment (IDE) similar to Arduino
with the same application programming interface (API), which enable existing
application codes and class libraries written for the Arduino platform to function on

the 86Duino platform without modification.

Created to support the academic community, the 86Duino EduCake, designed with
a metallic enclosure to protect the internal circuitry and an integrated breadboard that

provides easy access to the EduCake’s I/0, is an ideal platform for teaching computer

engineering, embedded system and related courses.

Fig-1-EduCake Fig-3-EduCake front view

Fig-4-EduCake dimension

86DuUIND

On the EduCake’s integrated breadboard, digital I/O 0~13, analog mput 0~5,
ground, 5V, 3.3V and RX/TX signals similar to the Arduino Leonardo are clearly
marked. These I/O interfaces are designed to be compatible to the Arduino
Leonardo, with the same hardware and software function. Existing application codes

and software libraries support these I/O interfaces without modification.

1e .1
2 .2
ra = '@
ae .a
RXO s Seesse ssse 5% & GND
LTX1 sebosse ssee 6% e ADS
; 2007008 seee 7% e AD4
~3 eede “seeBes AD3
4es9nsee swen 9% & AD2
~5 wel0w % e el0s s ADL
£ ~6eelle s e wlle s ADO
i 7ee2esee sees 12 & GND |
£ B esl3eesse seen 13 & 45V
g ~9 selde o.nou'od.!\l&
10%ei5e ® % e15e « RESET
5 -~ueeise “eeeise s 14Ta
§ 1R esl7s s snnn 17% » 153
~13 s w18 e e18e e 16T
GND # #19% s s % s o s s 19« & 17R2
SDA # 208 s s s seesw 20% & 18EA1
SCLe#w21e s es seee 21% & 1981
EADA2 # #2208 s 0% wwww 2% % 20E21
EBO43 # #2308 s o & “23% % 32~
E2044 » w240 » o » “24% e 33~
5 .25
% .2 :
L e .- >
28 .2

Fig-5- EduCake breadboard
Description for the EduCake breadboard’s 1/0:

1. There are 26 general purpose /0O (GPIO) accessible from the breadboard, 0~20, 31,
32, and 42~44. Each of these GPIO can support up to 16 mA of current, with
over-current protection to a total of 26 digital I/O can be used as a general use
of digital IO, current up to 16mA, limited protection to prevent inappropriate use

of faults, so beginners can feel free to try a variety of applications.
2. Analog 0~5 is used to capture type of sensor inputs.

3. There are 3 groups of RX/TX with TTL signal, RX/TX, RX2/TX2, RX3/TX3, to

support variety of communication.

4. Pin labeled with the “~” mark can provide PWM output similar to the Arduino
platform. The 86Duino EduCake provides 3 addition PWM output via GPIO pin
13, 31 and 32.

5. There are additional SCL and SDA pins to support [’C communication.

6. Note: On the Arduino 328 platform, when I>C is used, analog pin #4 and #5 are

needed, which take away 2 analog pins from performing other function.

86DuUIND

7. The EAO~1, EBO~1, EZ0O~1 are dedicated ENCODER for Motion Control. On

the Arduino platform, addition add-on board is needed to provide these function.
8. The 5V pin is designed to bypass 3.3V, with 800mA output.

With existing application codes and software libraries written for the Arduino
platform able to function on the 86Duino Educake, Arduino enthusiasts will find the
EduCake development environment similar to the Arduino IDE and able to adopt and
use the 86Duino IDE with their existing Arduino development skills. With the
EduCake’s powerful 300 MHz x86 processor, 128 MB of DDR3 system memory and
additional integrated functions, Arduino enthusiasts can use EduCake to develop new

innovations that are not possible on the Arduino platform.

86DuUINDO

2. Development Environment

One of the design objective for DMP development team is to create an 86Duino
integrated development environment (IDE) that is compatible to the Arduino IDE
with similar function and enable existing Arduino enthusiasts to adopt and use the
86Duino IDE without learning curve. Other than the color scheme, the 86Duino IDE

is almost identical to the Arduino IDE.

% sketch_nov13a | 86Duino Coding 100 E=SI=l X]

File Edit Sketch Tools Help

sketch_nov13a §

vo1d setup() { -
Sexial .begin(9600);
pinMode(31,0UTPUT);
pinMode(32,0UTPUT);
}
01d loop() {
int sensorValue = analogRead(AS);
Serxial_println(sensorValue);

analoghrite(31,sensorValue /4);
analoglrite(32 sensorValue /4);
delay(100);

1

Fig-6: 86Duino integrated development environment

86DuUINDO

From the 86Duino IDE, click on File>Examples, you can sce examples provided

as part of the 86Duino IDE are similar to the Arduino examples, as shown in Fig-7.

% sketcg_no?I%Duino Coding 100 — =T
File ketch Tools Help

New Ctrl+N
pen... Ctrl+O
ketchbook N tNsRssssssssssssssssssssssss
Examples ¥} OlBasics ’
Close ! O2Digital > ‘
Save Ctrl+S ! 03.Analog > AnalogInOutSerial |
Save As... Ctrl+Shift+S E 04.Communication * AnalogInput
Upload Ctrl+U E 05.Control ’ AnalogWriteMega |
Upload Using Programmer Ctrl+Shift+U E 06.Sensors ’ Calibration
+ 07.Displa ’ Fadin
Page Setup Ctrl+Shift+P |* .p y 9 5
: « 08.Strings ’ Smoothing
Print Ctrl+P .
« 09.UsSB »
Preferences Ctrl+Comma|: 10.StarterKit ’
. + ArduinolSP
Quit Ctrl+Q .
* EEPROM 8
< E Firmata ’
¢ Liquid E
‘ SD ’
E Servo ’
¢ SPI 3
E Stepper 4
f__Wire_____________ .|

Fig-7: 86Duino IDE - Examples

The 86Duino IDE uses the same programming command and API as the Arduino
platform. As shown on the 86Duino website, under the Reference-Language section

(http://www.86duino.com), the 86Duino development environment adopt the same

function call and programming structure as the official Arduino platform, as indicated

on Arduino website (http://arduino.cc) in the Language Reference section.
Experienced Arduino developers can jump into the 86Duino IDE and start writing
codes for 86Duino, in the same manner as they’ve been writing codes for the Arduino

platform.

The file directory structure for the 86 Duino development environment is different
from the Arduino. However, it does not impact the usage and function compatible to
the Arduino IDE. Individual user can configure their development environment.
Customizing the development environment is an advanced subject and will be covered

in a later chapter.

86DuUINDO

After an application program is written, the process to deploy the application for
86Duino platform is the same as Arduino. To deploy application to the EduCake,
you need to select the 86Duino EduCake as the target device from the 86Duino IDE,

as shown in Fig-8.

% sketch_nov13a | 86Dui 00 1%

File Edit Sketch Toolsl Help

Auto Format Ctrl+T
Archive Sketch

Fix Encoding & Reload

sketch_novi3a §

oid setup() { .) .
Sexial.bezin(9600) Serial Monitor Ctrl+Shift+M

piniode(31,0UTPUT | Auto Show Serial Monitor
pinMode(32, QTP

} Board » Vortex86EX (32-bits) Boards
Processor 86Duino ZERO
4 Jooy(){ Serial Port 86Duino ONE
t sensorValue = P G

Ssisa) o itintssn) Honranne: 1 86Duino EduCake

analoghrite(31,ser Arduino AVR Boards

naloglri te(32 Burn Bootloader » -

3R - Arduino Uno

ielay(100); - ‘ ;

) Arduino Duemilanove or Diec

Arduino Nano

Arduino Mega 2560 or Mega
Arduino Mega (ATmegal280
Arduino Leonardo

Arduino Micro
Arduino Esplora
Arduino Mini
Arduino Ethernet
Arduino Fio

AL NinT

Fig-8: 86Duino IDE — Selecting target device

In addition to selecting the correct target device, the 86Duino IDE needs to be
configured to use the correct serial port as the transport to deploy the application.
For the example in this application note, COMI is selected. The selected serial port
is displayed on the 86 Duino IDE screen’s lower right. Make sure the correct serial
port is selected. Incorrect serial port setting will prevent application from deploying
to the EduCake. To configure the serial port setting, from the 86Duino IDE menu,
click on Tools—>Serial Port and select the serial port you want to use, as shown in

Fig-9.

86DuUINDO

% sketch_nov13a | 86Dui ; E=RIEN X
File Edit Sketch Help ‘

Auto Format Ctrl+T
Archive Sketch
Fix Encoding & Reload

sketch_nov13a §

id setup() {

Serial begin(9600) Serial Monitor Ctrl+Shift+M
pinMode(31,0UTPUT | Auto Show Serial Monitor
pinkode(32,0UTPL
} Board >
Processor \
- Serial Port > COM1
int sensorValue = ,
Serfal.},u tln(sen: rogrammer g COM11

logWrite(31,sex
logirite(32,sen

urn Bootloader »

delay(100);
1

Fig-9: 86Duino IDE — Selecting serial port

With the application code written, proper target device and serial port settings
configured, the 86Duino IDE is ready to deploy the application to the EduCake. To
deploy application to the target device, from the 86Duino IDE screen’s top left, click
on the round icon with right-pointing arrow (“-=”’), as shown in Fig-10. The round
icon with a check mark (“\") is used to verify the codes, which the author of this
application note rarely used. When deploying application code to target device, the

code is verified prior to deploy and avoid a separate redundant step to verify the code.

86DuUINDO

% sketch_nov13a | 86Duino Coding 100 ==

File Edit Sketch Tools Help

sketch_novi3a §

void setup() { P
Sexial .begin(9600);
pinMode(31,0UTPUT);
pinMode(32,0UTPUT);
1

void loop() {
int sensorValue = analogRead(A5);

Serial .println{sensorValue);

analoglrite(31,sensorValue /4);
analoglrite(32,sensorValue /4);
delay(100);

1

Fig-10: 86Duino IDE — Deploy application to target device

86DuIND
3. First 86Duino Sample Application

In this section, we will work through the process to develop a simple 86Duino
application, to blink an LED. An LED and a resistor are needed for this example,
attached to the EduCake’s breadboard as shown in Fig-11. The current supply by the
GPIO pin on the EduCake’s breadboard is minimal. It’s possible to work through
this example without the resistor. However, it’s recommended to include the resistor

to work through this example. The resistor limit the current and protects the LED.

s
3
‘l
<~ ~
\‘ ™ *V",,O".
...... = S po‘»,\’
..... " 2 >
s 20 - " ~
S LN N e . "
£ e -]
© - - ~ >
o - |
- - ‘ W
W - - L -
W - - - -
e " - Plew
. ™ &
57 - - A
Y O e AR
. -"~"q,‘ s e b
© "o 2N A - - -
~ e . -
oS -) b - -
- <+ T - "'4»;_‘_ o ot - - -
s - - - =
R LT A e A _

Fig-11: LED and resistor connected to the breadboard on EduCake

The LED is polarity sensitive. Make sure to attach the cathode of the LED to

GPIO pin #3, as shown in Fig-11 above.

From the 86Duino IDE, enter the following codes:

void setup()

f
1

pinMode(3, OUTPUT); // configure GPIO pin #3 as output
j
void loop()

f
1

digitalWrite(3, HIGH); // Set GPIO pin #3 to HIGH and turn on the LED

delay(1000); // Delay 1000 ms (or 1 second)
digitalWrite(3,LOW); // Set GPIO pin #3 to LOW and turn off the LED
delay(1000); // Delay 1000 ms (or 1 second)

-10-

86DuUINDO

When the above program is deployed to the EduCake and running, it continues to
blink the LED on and off, in 1000 millisecond (1 second) interval. The example
works the same on an Arduino board. As you can see, writing codes for the 86Duino
platform is simple as the Arduino platform. By modifying the above codes to use
PWM function, using the analogWrite() function, instead of the digitalWrite()
function you can gradually turn on the LED and turn off the LED, with varying
lighting intensity. By adding some random value to the analogWrite() function, you
can create a candle-light flickering effect. Using just a simple LED, you can create

different interesting variations.

From working through the above simple example, you can see the 86Duino IDE
and API used in the application are identical to the Arduino environment. To the
experienced Arduino enthusiast, the 86Duino IDE is just another Arduino

development environment.
4. Second 86Duino Sample Application

With the first application that help validate the 86Duino development is properly
setup and working, we can move forward and work on more complex application. In
this second example, we will attach eight LEDs to the EduCake breadboard and work

through the process to develop a little more complex application.

First, attach the eight LEDs and resistors as shown in Fig-12.

[}

2

(5]
SFYyanwjys

0)'ONINAIS MMM
B3
B e

y
.‘
.o
.o
LR
» +
phd
a2

GND_» o L
» SOA ® @208 e e e

P
/ EAD42 & » 2218
EB043 ® ¢ 23 %

g E2044 ® ® 249

Fig-12: EduCake with LEDs and resistors attached — back view

-11-

86DuUINDO

Without making any change, here is the view, looking at the EduCake from the
front with the eight LEDs and resistors attached, as shown in Fig-13.

Fig-13: EduCake with eight LEDs and resistors attached — Front view

Taking into account that we may need a push button later on, a push button is
attached to the EduCake breadboard, as shown in Fig-14.

"”

-2
xX x

WMhd:~
?
ONOnBWwNRO

TR

3))220 000000

Fig-14: EduCake with LEDs, resistors and push button attached

-12-

86DuUIND

With the eight LEDs, resistors and push button circuitry as shown in Fig-14 above,
we can use the same circuitry for different exercises and experiments. In this next
exercise, we will develop a marquee program that will light up each of the eight LEDs

sequentially.

Following is the codes for the marquee program:

/I GPIO pins with PWM are deliberately chosen to support multiple exercises
// without having to change the circuit
int led[]={3,5,6,9,10,11,13,31}; // store GPIO pins ID to an array
int pos =0;
void setup() {
for(int a=0;a<8;a++) // Configure the GPIO pins to function as output
pinMode(led[a],OUTPUT);

-

void loop() {
digitalWrite(led[pos],LOW); // turn off the previous LED
pos=(pos+1)%S8; // determine the ID for the next LED to be turn on
digitalWrite(led[pos], HIGH); // turn on the next LED
delay(200); // delay briefly » increase delay time to slow down the light

movement

B

The above codes will sequentially turn each of the 8 LEDs on and then off,

making it looks like the light is moving, like a marquee.

The following line of code is simplified and shorten from multiple lines of code:

pos=(pos+1)%?8;

The following codes are equivalent to the above line of code.

pos ++;

if (pos>=8) pos =0;

In the last line of code (delay (200;) for the marquee application, you can change
the delay value to change the marquee’s apparent, increase or decrease the marquee

movement speed.

-13-

86DuUIND
www.86duino.com

5. Third 86Duino Sample Application

In this next exercise, we will use the EduCake’s serial port to communicate with
the PC, and use the PC to control the EduCake remotely. In addition to the
application running on the EduCake, we will need a serial port application running on
the PC to communicate with the EduCake.

Following are the codes, for the EduCake, for the exercise in this section:

int led[]={
3,5,6,9,10,11,13,31};
int pos =0;
void setup() {
Serial.begin(9600); // Initialize and set communication baud rate for the
serial port

// Serial port can support 9600/19200/38400/115200

and etc.
// Both the PC and EduCake must be configured to
support the same speed
for(int a=0;a<8;a++)
pinMode(led[a], OUTPUT);

—

void loop() {

char ch;
if (Serial.available()) /I Check for incoming messages from the
PC
{
ch=Serial.read(); // When there 1s message, read one
byte at a time.
if (ch>="1"' && ch<='8") // Check for 1~8 within the incoming
message.

digitalWrite(led[ch-49],HIGH); // If 1~8 is detected, turn on the LEDs.

}

delay(200);
1

[§

In the following line of code:

digitalWrite(led[ch-49],HIGH);

-14-

86DuUINDO

The variable ch is used to store ASCII data read from the serial port’s incoming
message, which is read one byte at a time. After the data is read, the ch variable
contains one ASCII code. The ASCII representation for decimal 1 ~ 8 are 49 ~ 57.
By subtracting 49 from the current ch value, we can convert the incoming message
from the serial port betweem 0 ~ 7, which we can map the value to the led[] array, and

use the value to turn the corresponding LED on.

To send serial port message to the EduCake, you can use the Serial Monitor from
the 86Duino IDE, and send 1 ~ 8 to remotely turn on the corresponding LED on.
From the 86Duino IDE, click on the icon on the top right of the screen to launch

Serial Monitor, as shown in Fig-15.

% sketch_novi13a|86Duino Coding 100

sketch_novi3a §
oid setup() { % COM1 ==
S (9600);
yinMode(31,0UTPUT);
pintode(32,OUTPUT);
}

| Send
EEMECOMERZR
Serial Monitor 3

oid loop() {
int sensorValue = analogRead(A5);
exial _printin(sensorValue);
olirite(31,sensorValue /4);
7livite(32,sensorValue /4);

deley(100); EUWARES

} -

v| Autoscroll No line ending v 9600 baud «

-_

< »

Fig-15: Serial Monitor - sending command to turn on LED

From the Serial Monitor screen, enter a value between 1 ~ 8 and click Send to turn
on the corresponding LED attached to the EduCake’s breadboard. The Serial
Monitor is a common tool used during development to communicate with the

86Duino target device for debugging and testing purposes.

When the Serial Monitor is in use, it captures the serial port connecting to the
86Duino target device. When using an alternative serial port communication program,

such as an application that you create using VB or C# with different User Interface to

-15-

86DuUINDO

control the EduCake, make sure the Serial Monitor is shut down to release the serial
port, making it available to the alternative serial port communication program.
Otherwise, when another application attempt to capture the same serial port already
in-use by the Serial Montitor, it will cause severe conflict and require the development

PC to reboot to resolve the conflict.

Any program that can communicate via the serial port can be used to communicate
with the EduCake. Following is a program we use, written in Visual Studio 2008, as
shown in Fig-16. You can use any version of Visual Studio, from 2005 through

2013 to develop similar application in Visual Basic or C#.

a5 LEDiZH C=nley X

Comm. Settings

COM COMI i@

BPS 0600 v | W%
B BT B B
B B B B

Fig-16: LED control application written in Visual Basic, using Visual Studio 2008

To use the LED control application, select the COM port used to connect to the
EduCake and set the transfer rate (BPS) to 9600 and click on the connect button (ZH43)

to connect to the EduCake.

The LED control application is a Windows application written in Visual Basic and
is not within the scope to be covered by this application note. You can develop
similar application in Visual Basic with additional function, such as using the mouse
wheel as the control, to turn on each LED sequentially in different direction as the
mouse wheel turns. As you learn more about the Analog pin’s function, you can
create application to detect battery voltage and use the detected voltage value to
control the LED lighting, and more. With some creative thinking, you can create

many different applications.

-16-

86DuUIND

If you prefer to use C#, the programming logic for C# is quite similar to Visual
Basic. Searching the Web with the “VB2C#” keyword, you can find a number of
websites with standalone utility or online resources to convert Visual Basic source
codes in to C#. In the later section, we will include sample application for mobile

phone.

The application code written in the previous section has a problem. After each
LED is turned on, it remains on. If you send subsequence command to turn on the
same LED, it does not show any visible affect and may give the wrong impression
that the application is not working properly. To fix this problem, you can simply

replace the following line of code:

digitalWrite(led[ch-49],HIGH);

Replace the above line of code with the following:

1
S

digitalWrite(led[ch-49],HIGH);
delay(1000);
digitalWrite(led[ch-49],LOW);

1
S

The above code turn on the LED for 1 second and then turn the LED off. You
may be asking: Why we did not use this code to begin with?

It’s a process to learn programming. It’s a process to develop an application.
Often, we simply cannot have a perfect answer with a single attempt. As part of the
application development process, we start by develop the application with some of the
function and feature, test to make sure each of these function is doing the job as
intended. Then, we add additional function, continue to identify problem area and
correct them, continue to test and validate the function until all of the required
function and feature are included in the application and passed the required test. As
we repeating the process, reviewing and testing the codes we wrote, we find better

approach, write better code and learn new things through this repeated process.

-17-

86DuUIND
6. Fourth 86Duino Sample Application

Once you know the base functionality, you can write a more complete application
with practical functions. Since this chapter talks about the EduCake’s digital I/0, we
will create a simple application using the LEDs to simulate a dice and rolling the dice.
The application will turn each LED on and off sequentially, moving from one
direction and reverse to the opposite direction as it reaches the last LED. As the
application is running, the rate (speed) at which the LED is moving decrease (slow
down) gradually and stop randomly at one of the LED to simulate the same effect as
rolling a dice. For the circuit we are using, there are 8 LEDs. If preferred, you can

modify the circuit to use 6 LEDs instead.

Here are the codes for this rolling dice application:

int led[]={
3,5,6,9,10,11,13,31};

//' A group of 3 variables are used to keep track of the current LED that is on,
// the next LED to turn on and the last LED within the current group to turn on,

/ to control the direction of the moving LED.

it nowPos =2; // Current LED that is turned on

it midPos=1; // Next LED to turn on

mt lastPos=0; // Last LED to turn on

//"The dir variable is used to control the moving direction.

int dir=1; // Moving direction, 1: from 0 to 7, -1: from 7 to 0

// The spd variable is used to control the moving speed.

int spd = 20; // Moving speed, smaller value = faster, larger value =
slower

void setup() {
Serial.begin(9600);
for(int a=0;a<8;a++)
pinMode(led[a],OUTPUT);
randomSeed(analogRead(0)); // Retrieve a random number

Start to initialize the random number seed

-18-

86DUIND
www.86duino.com

void loop() {
if (Serial.available())
{
char ch=Serial.read();
if (ch=="1") // Received command from the serial port to start the
process

spd =20;

// nowPos =2;
midPos=nowPos-1;
lastPos=nowPos-2;
dir =1;

}

if (spd<220) // as the value controlling the moving speed reach 220, the process
stop

digitalWrite(led[nowPos],HIGH); //turn on the current LED
if (midPos<8 & & midPos>=0)
analogWrite(led[midPos],40); = // turn on the next LED with medium
intensity
if (lastPos<8® && lastPos>=0)
analogWrite(led[lastPos],15); // turn on the last LED with low
intensity

delay(spd);

spd +=5; // Increase the spd value to gradually slow-down the
movement
if (spd>=220)
{
if (midPos<§ & & midPos>=0) // turn off all LED
digitalWrite(led[midPos],LOW);
if (lastPos<8® && lastPos>=0)
digitalWrite(led[lastPos],LOW);
digitalWrite(led[nowPos],LOW);

-19-

86DuUIND

digitalWrite(led[random(0, 8)],HIGH); //get a random number, turn on
corresponding LED
spd =1000;
1
s
if (lastPos<® && lastPos>=0)
digitalWrite(led[lastPos],LOW); //turn off last LED - preparing to move
lastPos=midPos;
midPos=nowPos;
nowPos+=dir;
if (nowPos>7)
S
1
nowPos=7;
midPos=8;
lastPos=9;
dir=-1;
1
s
else if (nowPos <0)
S
1
nowPos=0;
midPos=-1;
lastPos=-2;
dir=1;

——

-

delay(spd/3);

1
s

In the last line of code.

delay(spd/3);

The spd variable is used as a self-adjusted value to control the moving speed.
You can use a serial port communication program to change the speed or other

methods to make the application more interesting.

Instead of using the Serial Monitor or a separate serial port communication
program to send reset signal to the application, you can use the push button, to

function as the reset button. In the earlier section, as part of setting up the LED

-20-

86DuUIND
www.86duino.com

circuit, a push button is attached to digital pin #12. You can use the following
modified codes to check the push button’s status, to detect whether it’s been pressed

(The line with “ - - o ” represent unmodified code and is omitted to safe space):

o o o

void setup() {

o o o

pinMode(12,INPUT); // New code added - to set digital pin #12 as input

-

void loop() {
int bb;
bb=digitalRead(12); // reading digital Pin #12
Serial.println(bb); // Output the reading to serial port for debug
if (bb==1) // If 1 1s detected, the button is pressed
run_again(); // Call the run_again function

-

void run_again() // Add this function outside of the program loop
// This function reset the LED, preparing the program to run
again
{
spd =20;
midPos=nowPos-1;
lastPos=nowPos-2;
dir =1;

}

-21-

