
86Duino
www.86duino.com

-1-

EduCake Getting Started – Digital I/O

1. Introduction to EduCake and Integrated I/O

As part of today’s modern living, there are broad ranges of microcontroller being

used as part of the product all around our home and work place, such as electronic toy,

appliance, remote control and entertainment system at home, and automated assembly

system and other automation control at the work place. To the general public not

working in the computer electronic and related field, learning to use these

micro-controller and SoC is a difficult challenge, which require knowledge about how

different type of electronic components work, knowing how to work with electronic

schematic layout and perform complex low-level programming which take enormous

times and efforts to learn. Many beginners attempting to learn are discouraged by

the difficult challenge, lack of resources and give up along the way.

To address the difficulty in learning and using microcontroller, a team in Italy

created the Arduino platform to help beginner learn and use microcontroller

technology with a simple and easy to learn development environment. Released as

an open-source platform, the Arduino platform gains popularity quickly and is being

used by technical and non-technical hobbyist, professional and academic developers

around the world. As an open-source platform, many Arduino communities and user

groups are formed in different region and created large pool of technical resources,

covering both hardware and software, in different languages. As the Arduino

platform evolves, it becomes one of the popular platform for the academic and

hobbyist communities.

Created by DMP Electronic, a company based in Taiwan, the 86Duino series of

hardware is designed with Arduino compatible electronic interface, built with the

following features:

 300MHz 32-bit system-on-chip with an x86 CPU core

 128MB DDR3 system memory

 10/100 high speed Ethernet

86Duino
www.86duino.com

-2-

 Two USB 2.0 interfaces

 Micro-SD

 Open-Source Hardware

 Support DOS, Windows, Linux

 Provide an integrated development environment (IDE) similar to Arduino

with the same application programming interface (API), which enable existing

application codes and class libraries written for the Arduino platform to function on

the 86Duino platform without modification.

Created to support the academic community, the 86Duino EduCake, designed with

a metallic enclosure to protect the internal circuitry and an integrated breadboard that

provides easy access to the EduCake’s I/O, is an ideal platform for teaching computer

engineering, embedded system and related courses.

Fig-1-EduCake Fig-2-EduCake rear view Fig-3-EduCake front view

Fig-4-EduCake dimension

86Duino
www.86duino.com

-3-

On the EduCake’s integrated breadboard, digital I/O 0~13, analog input 0~5,

ground, 5V, 3.3V and RX/TX signals similar to the Arduino Leonardo are clearly

marked. These I/O interfaces are designed to be compatible to the Arduino

Leonardo, with the same hardware and software function. Existing application codes

and software libraries support these I/O interfaces without modification.

Fig-5- EduCake breadboard

Description for the EduCake breadboard’s I/O:

1. There are 26 general purpose I/O (GPIO) accessible from the breadboard, 0~20, 31,

32, and 42~44. Each of these GPIO can support up to 16 mA of current, with

over-current protection to a total of 26 digital I/O can be used as a general use

of digital IO, current up to 16mA, limited protection to prevent inappropriate use

of faults, so beginners can feel free to try a variety of applications.

2. Analog 0~5 is used to capture type of sensor inputs.

3. There are 3 groups of RX/TX with TTL signal, RX/TX, RX2/TX2, RX3/TX3, to

support variety of communication.

4. Pin labeled with the “~” mark can provide PWM output similar to the Arduino

platform. The 86Duino EduCake provides 3 addition PWM output via GPIO pin

13, 31 and 32.

5. There are additional SCL and SDA pins to support I²C communication.

6. Note: On the Arduino 328 platform, when I²C is used, analog pin #4 and #5 are

needed, which take away 2 analog pins from performing other function.

86Duino
www.86duino.com

-4-

7. The EA0~1, EB0~1, EZ0~1 are dedicated ENCODER for Motion Control. On

the Arduino platform, addition add-on board is needed to provide these function.

8. The 5V pin is designed to bypass 3.3V, with 800mA output.

With existing application codes and software libraries written for the Arduino

platform able to function on the 86Duino Educake, Arduino enthusiasts will find the

EduCake development environment similar to the Arduino IDE and able to adopt and

use the 86Duino IDE with their existing Arduino development skills. With the

EduCake’s powerful 300 MHz x86 processor, 128 MB of DDR3 system memory and

additional integrated functions, Arduino enthusiasts can use EduCake to develop new

innovations that are not possible on the Arduino platform.

86Duino
www.86duino.com

-13-

With the eight LEDs, resistors and push button circuitry as shown in Fig-14 above,

we can use the same circuitry for different exercises and experiments. In this next

exercise, we will develop a marquee program that will light up each of the eight LEDs

sequentially.

Following is the codes for the marquee program:

The above codes will sequentially turn each of the 8 LEDs on and then off,

making it looks like the light is moving, like a marquee.

The following line of code is simplified and shorten from multiple lines of code:

The following codes are equivalent to the above line of code.

In the last line of code (delay (200;) for the marquee application, you can change

the delay value to change the marquee’s apparent, increase or decrease the marquee

movement speed.

// GPIO pins with PWM are deliberately chosen to support multiple exercises
// without having to change the circuit
int led[]={3,5,6,9,10,11,13,31}; // store GPIO pins ID to an array
int pos =0;
void setup() {
 for(int a=0;a<8;a++) // Configure the GPIO pins to function as output
 pinMode(led[a],OUTPUT);
}

void loop() {
 digitalWrite(led[pos],LOW); // turn off the previous LED
 pos=(pos+1)%8; // determine the ID for the next LED to be turn on
 digitalWrite(led[pos],HIGH); // turn on the next LED
 delay(200); // delay briefly，increase delay time to slow down the light

movement
}

pos=(pos+1)%8;

pos ++;
if (pos>=8) pos =0;

86Duino
www.86duino.com

-14-

digitalWrite(led[ch-49],HIGH);

5. Third 86Duino Sample Application

In this next exercise, we will use the EduCake’s serial port to communicate with

the PC, and use the PC to control the EduCake remotely. In addition to the

application running on the EduCake, we will need a serial port application running on

the PC to communicate with the EduCake.

Following are the codes, for the EduCake, for the exercise in this section:

In the following line of code:

int led[]={
 3,5,6,9,10,11,13,31};
int pos =0;
void setup() {
 Serial.begin(9600); // Initialize and set communication baud rate for the

serial port
 // Serial port can support 9600/19200/38400/115200

and etc.
 // Both the PC and EduCake must be configured to

support the same speed
 for(int a=0;a<8;a++)
 pinMode(led[a],OUTPUT);
}

void loop() {
 char ch;
 if (Serial.available()) // Check for incoming messages from the

PC
 {
 ch=Serial.read(); // When there is message, read one

byte at a time.
 if (ch>='1' && ch<='8') // Check for 1~8 within the incoming

message.
 digitalWrite(led[ch-49],HIGH); // If 1~8 is detected, turn on the LEDs.
 }
 delay(200);

}

86Duino
www.86duino.com

-17-

If you prefer to use C#, the programming logic for C# is quite similar to Visual

Basic. Searching the Web with the “VB2C#” keyword, you can find a number of

websites with standalone utility or online resources to convert Visual Basic source

codes in to C#. In the later section, we will include sample application for mobile

phone.

The application code written in the previous section has a problem. After each

LED is turned on, it remains on. If you send subsequence command to turn on the

same LED, it does not show any visible affect and may give the wrong impression

that the application is not working properly. To fix this problem, you can simply

replace the following line of code:

The above code turn on the LED for 1 second and then turn the LED off. You

may be asking: Why we did not use this code to begin with?

It’s a process to learn programming. It’s a process to develop an application.

Often, we simply cannot have a perfect answer with a single attempt. As part of the

application development process, we start by develop the application with some of the

function and feature, test to make sure each of these function is doing the job as

intended. Then, we add additional function, continue to identify problem area and

correct them, continue to test and validate the function until all of the required

function and feature are included in the application and passed the required test. As

we repeating the process, reviewing and testing the codes we wrote, we find better

approach, write better code and learn new things through this repeated process.

digitalWrite(led[ch-49],HIGH);
Replace the above line of code with the following:
}
digitalWrite(led[ch-49],HIGH);
 delay(1000);
 digitalWrite(led[ch-49],LOW);

}

86Duino
www.86duino.com

-18-

6. Fourth 86Duino Sample Application

Once you know the base functionality, you can write a more complete application

with practical functions. Since this chapter talks about the EduCake’s digital I/O, we

will create a simple application using the LEDs to simulate a dice and rolling the dice.

The application will turn each LED on and off sequentially, moving from one

direction and reverse to the opposite direction as it reaches the last LED. As the

application is running, the rate (speed) at which the LED is moving decrease (slow

down) gradually and stop randomly at one of the LED to simulate the same effect as

rolling a dice. For the circuit we are using, there are 8 LEDs. If preferred, you can

modify the circuit to use 6 LEDs instead.

Here are the codes for this rolling dice application:

int led[]={
 3,5,6,9,10,11,13,31};

// A group of 3 variables are used to keep track of the current LED that is on,
// the next LED to turn on and the last LED within the current group to turn on,
// to control the direction of the moving LED.
int nowPos =2; // Current LED that is turned on
int midPos=1; // Next LED to turn on
int lastPos=0; // Last LED to turn on
// The dir variable is used to control the moving direction.
int dir=1; // Moving direction, 1: from 0 to 7, -1: from 7 to 0
// The spd variable is used to control the moving speed.
int spd = 20; // Moving speed, smaller value = faster, larger value =

slower

void setup() {
Serial.begin(9600);
 for(int a=0;a<8;a++)
 pinMode(led[a],OUTPUT);
 randomSeed(analogRead(0)); // Retrieve a random number
Start to initialize the random number seed

}

86Duino
www.86duino.com

-19-

void loop() {
 if (Serial.available())
 {
 char ch=Serial.read();
 if (ch=='1') // Received command from the serial port to start the

process
 {
 spd =20;
 // nowPos =2;
 midPos=nowPos-1;
 lastPos=nowPos-2;
 dir =1;
 }
 }
 if (spd<220) // as the value controlling the moving speed reach 220, the process

stop
 {
 digitalWrite(led[nowPos],HIGH); // turn on the current LED
 if (midPos<8 && midPos>=0)
 analogWrite(led[midPos],40); // turn on the next LED with medium

intensity
 if (lastPos<8 && lastPos>=0)
 analogWrite(led[lastPos],15); // turn on the last LED with low

intensity

 delay(spd);

 spd +=5; // Increase the spd value to gradually slow-down the

movement
 if (spd>=220)
 {
 if (midPos<8 && midPos>=0) // turn off all LED
 digitalWrite(led[midPos],LOW);
 if (lastPos<8 && lastPos>=0)
 digitalWrite(led[lastPos],LOW);
 digitalWrite(led[nowPos],LOW);

86Duino
www.86duino.com

-20-

In the last line of code.

The spd variable is used as a self-adjusted value to control the moving speed.

You can use a serial port communication program to change the speed or other

methods to make the application more interesting.

Instead of using the Serial Monitor or a separate serial port communication

program to send reset signal to the application, you can use the push button, to

function as the reset button. In the earlier section, as part of setting up the LED

 digitalWrite(led[random(0, 8)],HIGH); //get a random number, turn on
corresponding LED

 spd =1000;
 }

if (lastPos<8 && lastPos>=0)
 digitalWrite(led[lastPos],LOW); //turn off last LED，preparing to move

 lastPos=midPos;
 midPos=nowPos;
 nowPos+=dir;
 if (nowPos>7)
 {
 nowPos=7;
 midPos=8;
 lastPos=9;
 dir=-1;
 }
 else if (nowPos <0)
 {
 nowPos=0;
 midPos=-1;
 lastPos=-2;
 dir=1;
 }
 }

 delay(spd/3);

}

delay(spd/3);

86Duino
www.86duino.com

-21-

circuit, a push button is attached to digital pin #12. You can use the following

modified codes to check the push button’s status, to detect whether it’s been pressed

(The line with “。。。” represent unmodified code and is omitted to safe space):

。。。

void setup() {
 。。。

 pinMode(12,INPUT); // New code added，to set digital pin #12 as input

}

void loop() {
 int bb;
 bb=digitalRead(12); // reading digital Pin #12
 Serial.println(bb); // Output the reading to serial port for debug
 if (bb==1) // If 1 is detected, the button is pressed
 run_again(); // Call the run_again function

 。。。

}

void run_again() // Add this function outside of the program loop
 // This function reset the LED, preparing the program to run

again
{
 spd =20;
 midPos=nowPos-1;
 lastPos=nowPos-2;
 dir =1;

}

