
86Duino 
www.86duino.com 

-1- 

EduCake:  Interrupt and Event 

1. Introduction to Interrupt and Event 
In previous chapters, we talked about how the 86Duino EduCake interfaces to external 
peripherals, such as digital I/O, analog I/O, sensor and motor.  This chapter talks about 
interrupt and event, which are important to develop responsive and efficient application.  
In the previous chapters, we had multiple exercises that use combination of 
digitalRead/Write(), analogRead/Write() and delay() function to change LED 
brightness, read analog input at predetermined time interval and etc.  These are polling 
method.  While polling method works, it’s not the best and efficient method, where 
the code need to run continuously in loop with the delay() function to control timing in 
order to read and capture input from one or more input sources.  While executing the 
program loop, it consumes processing and memory resources which add unnecessary 
loading to the controller. 

Instead of polling, an efficient application should be written to respond to external 
events and executes relevant codes each time these external events happen. These 
events trigger one of the microcontroller’s interrupts to alert the system there is pending 
task to handle, where an Interrupt Service routine (ISR) is used to handle the event.  
Interrupt and event are part of the common design for the PC we are using and many 
microprocessors in the current market, including the Vortex86EX which the 86Duino 
EduCake is built on. Even legacy serial port communication is heavily relying on 
interrupt and event to communication efficiently.  

 
Figure-1: Typical interrupt processing operation for a processor 



86Duino 
www.86duino.com 

-2- 

Instead of polling, an efficient application should be written to respond to external 
events and executes relevant codes each time these external events happen. These 
events trigger one of the microcontroller’s interrupts to alert the system there is pending 
task to handle, where an Interrupt Service routine (ISR) is used to handle the event.  
Interrupt and event are part of the common design for the PC we are using and many 
microprocessors in the current market, including the Vortex86EX which the 86Duino 
EduCake is built on. Even legacy serial port communication is heavily relying on 
interrupt and event to communication efficiently. 

As shown in figure-1, while not servicing any interrupt tasks, the processor goes about 
to perform other designated tasks. When an interrupt occurs, the processor will 
temporary halt existing tasks and jump into an interrupt handler and process tasks 
associate with the interrupt. After the interrupt tasks is handled, the processor will 
continue to process the task that was halted just before the interrupt occurred. Since the 
interrupt handling process affects the code that has to halted in order to process the 
interrupt event, the code that is part of the interrupt handler must be optimized and take 
minimal processing time to complete. 

There are two different type of interrupts, “internal interrupt” and “external interrupt”.  
Internal interrupts are part of the processor’s built-in function, such as the built-in timer 
used to trigger functions that need to perform at a set time interval, such as reading 
sensor data at 30 seconds interval, which is different from the delay () function where 
the processor is not able to perform other task while waiting for the delay () function. 
By using timer interrupt to trigger the function to read sensor data at 30 second interval, 
the processor is able to perform other tasks in between the 30 seconds waiting period 
when the interrupt is not occupying processor resources.  Using the delay () method in 
polling mode, the processor is occupied by this process and not able to perform other 
task. In addition, the timer triggered events generate a far more accurate and consistent 
timing period than the delay () function.  External interrupt, as the name implied, is 
triggered by sources external to the processor, such as when one of the GPIO pin’s 
voltage is changed from low to high or vice versa.  With proper circuitry and 
implementation, external device can trigger interrupt and generating event for the 
processor to react to and create an efficient application development environment. 
External interrupt is covered in more detail later in the chapter. 

In addition to using interrupt, the 86Duino EduCake has other feature to detect changes 
from external devices using the pulseIn () function.  This function can be used to 
detect change in voltage for a signal pin and the length of time the signal pin remains in 



86Duino 
www.86duino.com 

-3- 

HIGH or LOW state. The pulseIn () function is used in the sample exercise later in this 
chapter, and compare the result with interrupt. 

In the following section, we will work through different exercises to demonstrate how 
to use the interrupt and pulseIn () function. 

 

 

  



86Duino 
www.86duino.com 

-4- 

2. First exercise – attachInterrupt() and 

deattachInterrupt() 
In this first exercise, we will work through an exercise to show how to use the 86Duino 
EduCake’s interrupt, using the circuitry below: 

 

There are two different methods to implement the button circuitry, as shown in the 
following figures. These circuits are designed to be in voltage LOW condition, when 
the button is not pressed and will generate a HIGH voltage condition when the button is 
pressed.  

 

Launch the 86Duino IDE and enter the following codes: 

 

 



86Duino 
www.86duino.com 

-5- 

nt BTN_pin = 3;// Normal LOW, pin 18 = interrupt 3 
int LED_pin = 19; 
volatile int state = LOW; 
int count = 0; 
 
void setup() 
{ 
  Serial.begin(115200);// Configure Serial port 
  pinMode(LED_pin, OUTPUT);// Configure signal pin  
  digitalWrite(LED_pin, LOW);// Initialize LED to OFF 
 
  // attach interrupt to signal pin 
  attachInterrupt(BTN_pin, InterruptHandler, RISING); 
} 
 
void loop() 
{ 
  if(Serial.available()){// check Serial Port for data 
    char data = Serial.read(); 
    if(data == 'A'){// when an “A” is detected  
       
      // attach interrupt for the signal pin 
      attachInterrupt(BTN_pin, InterruptHandler, RISING); 
      Serial.println(">> Interrupt ON"); 
    } 
    else if(data == 'B'){// when a “B” is detected 
 
      // detach interrupt from signal pin 
      detachInterrupt(BTN_pin); 
      Serial.println(">> Interrupt OFF"); 
    } 
  } 
   
  digitalWrite(LED_pin, state);// turn LED ON 
} 
 
void InterruptHandler() 
 
I{ 
state = !state;// Change LED state 
  count++;// increment counter by 1 
  Serial.print("Count = "); 
  Serial.println(count); 
} 

 

 

For the above exercise, each time the button is pressed, it trigger the interrupt and 
associated processing function to change the LED state and increment the counter by 1. 
The Serial Monitor is used to display counter activities. When a character “B” is 
detected from the serial port, interrupt is disabled. When a character “A” is detected 
from the serial port, interrupt is enabled, as shown in the following figure.  



86Duino 
www.86duino.com 

-6- 

 

The program begins with variables declaration, define signal pin used in the circuit, 
initialize LED status and counter value.  Then, the attachInterrupt() function is called 
within the setup() to set the interrupt number, corresponding interrupt handler, interrupt 
detection mode and other parameters. 

You may be wondering why BTN_pin is set to 3 in the code (BTN_pin = 3) while the 
actual button is connected to digital I/O pin #18. The 86Duino platform has multiple 
group of GPIO that can be associated with built-in interrupt, as shown in the following 
table (http://www.86duino.com/?p=1756): 

中斷編號 int.0 int.1 int.2 int.3 int.4 int.5 

EduCake 42 43 44 18 19 20 

 

In the attachInterrupt(pin, ISR, MODE) and detachInterrupt(pin) functions, the pin 
parameter is referencing the interrupt number associated with the pin and not the 
physical pin number. Interrupt detection mode can be set to detect the following: 

 Change in voltage from HIGH to LOW and from LOW to HIGH 
 RISING – Voltage from LOW to High 
 FALLING – Voltage from HIGHT to LOW 



86Duino 
www.86duino.com 

-7- 

You can select one of the above interrupt detection method based on the type of 
circuitry is used.  In this exercise, the pin associated with the button is in voltage 
LOW condition when the button is not pressed. When the button is pressed, the 
associated circuit causes the voltage on the pin to go HIGH.  The code for this 
exercise uses the RISING detection mode to detect when the button is pressed. 

Every time the interrupt handler is triggered, it change the LED status to the opposite, 
increment the COUNT by one and uses the Serial.print() function to output the result to 
the Serial Monitor. 

Within the loop() function , there are codes that check inbound data from the Serial port. 
When a character “A” is detected, it triggers the attachInterrupt(pin, ISR, MODE) 
function, which will continuously detect the designated interrupt.  When a character 
“B” is detected, it triggers the detachInterrupt(pin) function to stop the routine that is 
assigned to detect the designated interrupt. 

Within the loop() function, the digitalWrite() function control the LED brightness based 
on the State variable. 

In addition to processing the application code from the IDE, the 86Duino platform is 
actually handling other interrupt events, such as receiving incoming data for the Serial 
port.  

In the above exercise, the attachInterrupt(0 and detachInterrupt() functions are used to 
start and stop interrupt detection for a designated I/O pin.  In addition to these 
functions, the 86Duino platform has other interrupt handling functions, interrupts() and 
noInterrupts().  The interrupts() function is used to enable background interrupt 
handling. The noInterrupts() function is used to disable background interrupt handling. 
You can use these two interrupt function in the above exercise and compare the result. 

When executing the code in the above exercise, you may notice a single button press 
event can trigger multiple interrupt events, which is caused by a condition refer to as 
bounce. When the button is pressed, the mechanical contact may create several 
intermittent contact as part of the process and trigger multiple interrupt events. 
Debounce is a common application issue for microcontroller which can be addressed as 
part of the hardware and/or software design. This is a common issue which you should 
search for addition and more detailed information to better understand the associated 
problem and resolution. 



86Duino 
www.86duino.com 

-8- 

// pulseIn Timer 
// I/O pin connected to button, normal low 
//  pin 18 = interrupt 3 
int btn_pin = 18; 
 
// pulseIn timeout period, in micro-second 
unsigned long max_duration = 2000000; 
 
void setup() { 
  Serial.begin(115200);// initialize Serial port 
  pinMode(btn_pin, INPUT);// initialize I/O pin 
} 
 
void loop() { 
  // Output message to serial monitor 
  Serial.println("Please press button..."); 
   
  unsigned long duration = pulseIn(btn_pin, HIGH, max_duration); 
   
  if(duration>0){ 
    Serial.print("Delta time = "); 
    // output interval to serial monitor, in millisecond 
    Serial.print(((float)duration)/1000); 
    Serial.println(" (ms)"); 
  } 
  else{ 
    Serial.println("No pulse...End"); 
  } 
   
  delay(2000); 
} 

3.  Second exercise – pulseIn()  
The exercise in this section is similar to the previous one, using the puseIn() function 

with the same circuitry. From the 86Duino IDE, enter the following code: 

 

The sample application in this exercise detect the length of time the button is pressed. 
Prior to executing the application code, you need to launch Serial Monitor. When the 
“Please press button…” message is shown, you can press the button to see the result.  
The code detect whether the button has been pressed within 2 seconds.  When button 
press event is not detected after 2 seconds, the message “No pulse…End” will be sent 
to the Serial monitor.  After 2 seconds delay, the process to detect button press repeat 
again, as shown in the figure below: 

 

 



86Duino 
www.86duino.com 

-9- 

 

In this exercise, the pulseIn() function does not use interrupt to detect button press 
event.  Since the code is detecting the button event when the pulseIn() function is 
being executed, the code must run continuously inside the main program loop().  
There are two calling conventions for the pulseIn() function:  

 pulseIn(pin, value) 
 pulseIn(pin, value, timeout) 

The pulseIn() function operation is demonstrated in the figure below: 



86Duino 
www.86duino.com 

-10- 

 

Figure:  Return value from pulseIn() function based on 1000ms timeout value  

 

In an example where the code is designed to detect voltage HIGH condition, when a 
full-wave is detected within the designated timeout period (both the rising and falling 
edge of the wave happen within the timeout period), the function return the detected 
value (length of time between the rising and falling edge). Otherwise, the function 
return 0 value. The pulseIn() function will detect the length of time from a rising-edge 
to falling-edge or vice versa from falling-edge to rising-edge, as long as both edge are 
within the timeout period. When change is not detected within the timeout period, the 
function return 0 value. 

The above example start with declaring “unsigned long max_duration = 2000000” (the 
value is in micro second) as the timeout period. 

 

 



86Duino 
www.86duino.com 

-11- 

The example for this exercise starts with declaring “unsigned long max_duration = 
2000000” (the value is in micro second) as the timeout period.  Using this timeout 
variable, the pulseIn() function will wait and attempt to detect change to the signal pin 
for 2 seconds and continue. When the pulseIn(pin value) function is used, the timeout 
period is set to 1 second. Within the setup() function, the pinMode(btn_pin, INPUT) 
function is called to initialize the signal pin linked to the button as input signal. The 
Serial.print() function inside the main program loop() output a message to the Serial 
Monitor to prompt the user to press the button. Then, the following line of code is used 
to detect button press event: 

- unsigned long duration = pulseIn(btn_pin, HIGH, max_duration) 

Since the signal pin for the button is in normal LOW condition, the pulseIn() function is 
set to detect voltage HIGH condition. If the signal pin for the button is wired as normal 
HIGH condition, you would set the pulseIn() function to detect voltage LOW condition. 
The return value from the pulseIn() function is in micro-second and need to be divided 
by 1000 to convert to millisecond.  You can change the timeout value to a different 
range, such as to 5 seconds, to see different result. 

From this exercise, you can see the different between using the pulseIn() function and 
interrupt to detect change to the I/O pin, one of the methods is able to respond to 
external event immediately, the other needs to execute some code in order to detect the 
event.   

Based on the code from this exercise, you can think about how to modify the code to 
detect reaction time from the time when the LED is turn on to the time when the button 
is pressed. How would you modify the code to accomplish this? 

 

 

  



86Duino 
www.86duino.com 

-12- 

4. Third exercise  
Although the pulseIn() function is not responsive, comparing with interrupt function, 
this function has its usefulness. In this exercise, we will use pulseIn() function to create 
interesting application. An ultrasonic sensor will be used for this exercise, using the 
HC-SR04 ultrasonic sensor which is widely available for purchase from many hardware 
vendor.  Obviously, there are different variety of ultrasonic sensors available in the 
market where most of these sensors have similar function and behavior, with different 
sensing distance and accuracy. In general, most of the ultrasonic sensors in the market 
is built with an interface that has 3 to 4 wires, where 2 of these wires are 5V and GND, 
and the remaining wires are for sensor value. 

The circuitry for this exercise is built on top of the existing circuit from the previous 
exercise.  Using he existing circuit from the previous exercise, add additional 
components and wiring to the circuit, as shown in the figure below. 

 

From the 86Duino IDE, enter the following code: 

 

#define trigPin_1 9 // set pin number for trigPin 
#define echoPin_1 10 // set pin number for echoPin 
#define intervaltime 100 // set measurement interval in ms 
#define LED_Pin 19// set output pin for LED 
boolean LED_ON = false;// LED status 
unsigned int LED_ON_count = 0;// LED on counter 



86Duino 
www.86duino.com 

-13- 

     

unsigned int LED_ON_count_max = 1;// LED on max duration 
unsigned int LED_OFF_count = 0;// LED off duration 
int timeout = 12000; // set timeout period for pulseIn 
 
// speed of sound in cm/micro second 
float Sound_speed = 343.0f * 100 / 1000000; 
 
void setup() 
{ 
  Serial.begin(115200); 
  pinMode(trigPin_1, OUTPUT);// set trigPin to output mode 
  pinMode(echoPin_1, INPUT);// set echoPin to input mode 
  pinMode(LED_Pin, OUTPUT);// set LED_pin to output mode 
  digitalWrite(trigPin_1, LOW);// initialize trigpin to LOW 
  delay(1); 
} 
 
void loop() { 
  // Read sensor value from ultrasonic sensor 
  // Convert sensor value to float 
  float distance = Get_US(); 
  if(distance>0){ 
    Serial.print(", Dis= "); 
    Serial.print(distance); 
 
    if(LED_ON) {    // LED On 
      LED_ON_count++; 
      if(LED_ON_count >= LED_ON_count_max) { 
        LED_ON_count = 0; 
        LED_ON = false; 
      } 
      digitalWrite(LED_Pin,HIGH); 
      Serial.print(", LED ON"); 
    } 
    else {         // LED Off 
 
LED_OFF_count++; 
      if(LED_OFF_count >= int(distance/10)) { 
        LED_OFF_count = 0; 
        LED_ON = true; 
      } 
      digitalWrite(LED_Pin,LOW); 
    } 
    Serial.println(); 
  } 
  else { 
    Serial.println("Out of range !"); 
  } 
  delay(intervaltime);  
} 
// function to read sensor value from ultrasonic sensor 
float Get_US() { 
  // Trigger 
  digitalWrite(trigPin_1, LOW);   
  delayMicroseconds(2);   
  digitalWrite(trigPin_1, HIGH);   
  delayMicroseconds(10);   
  digitalWrite(trigPin_1, LOW); 
 
 



86Duino 
www.86duino.com 

-14- 

  
The exercise in the section has similar function as the automobile’s backup warning 
sensor. When detected obstacle is getting closer, the associated LED’s flashing 
frequency increases.  Before going through and reviewing this exercises’ code, let’s 
take a look at the how an ultrasonic sensor function, as shown in the following figures:     

 

 

When the controller send trigger signal to the ultrasonic sensor, the sensor emit 
ultrasound and begin to calculate the time delay for the sensor to detect the reflected 
wave and send the detected value to the controller. 

For the HC-SR04 sensor, there are 2 signal pins, Trig and Echo. The “Trig” pin is used 
to detect trigger signal from the controller to begin the sensor detection process. The 
“Echo” pin is used to send detected sensor value to the controller after the detection 
process is completed (there are other ultrasonic sensors in the market built with both 
Trig and Echo functions into the same pin).  Both the “Trig” and “Echo” pins are in 
normal LOW condition.  When the controller send triggering signal, it generates a 
HIGH voltage condition via the “Trig” pin for 10μs and then go back to the voltage 
LOW condition, to signal the sensor to begin the detection process. When the sensor 
detected the reflecting wave, the “Echo” pin send a voltage HIGH signal, where the 
time period for this HIGH signal is equivalent to “the time it takes for the transmitted 
ultrasound to be reflected back and detected by the sensor”, in μs. This is where the 
pulseIn() function is useful. The ultrasonic sensor’s detection process is shown in the 
following figure: 

  // Read 
  long duration = pulseIn(echoPin_1, HIGH, timeout);// timeout in us 
  Serial.print("Dur= "); 
  Serial.print(duration); 
 
  // convert sensor value to distance 
  float distance = (float)(duration) / 2 * Sound_speed; 
  return distance; 
} 



86Duino 
www.86duino.com 

-15- 

 

 

The code for this exercise begin with declaring and initializing variables such as 
measurement interval, timeout value for pulseIn() function, LED flashing parameter, 
speed of sound in cm/second and etc. In the setup() routine, signal pins connected to the 
sensor are initialized and set to proper operating mode.  As you can see, there are very 
little code within the main program loop().  It’s common for a sensor application to 
involve large number of sensors where the same code is replicated many times to 
support each of these sensors. To avoid repeating the same code over and over again, 
it’s best to encapsulate the code into a function and call the function when needed to 
minimize the need to repeat the code in multiple location and simplify the effort needed 
to maintain the code. The ultrasound sensor handling code in this exercise is 
encapsulated in the Get_US() function.  When the Get_US() function is called, it 
handles the necessary process needed to get sensors value and return the value to the 
calling function within the main program loop(), where the value is used to control 
LED and output to the Serial Monitor. 

When the Get_US() function executes, to prevent unknowingly changing the 
EduCake’s I/O pin associate with the Trig signal pin by other function, the 
“digitalWrite(trigPin_1, LOW)” function is called to set the pin to the designed settings.  
The “delayMicroseconds(2)” is called to provide sufficient time for the signal pin to reach 
a stable state. Then, the “digitalWrite(trigPin_1, HIGH)” function is called to trigger the 
sensor to emit sound wave, which will remain HIGH for 10μs and then go LOW to 
begin the detection process. After that, the “pulseIn(echoPin_1, HIGH, timeout)” function 
is called to capture the sensor value.  Since the detected sensor value represent the 
time it take for the sound wave to travel from the sensor to the reflecting object and 
back, dividing the value by 2 yield the actual time for the wave to travel from the 
reflecting object back to the sensor. 



86Duino 
www.86duino.com 

-16- 

The formula to calculate the distance is “distance = travel-time * speed”, where the 
speed of sound is calculated as “speed of sound = 331 + (0.6 * temp in Celsius)”. For 
this exercise, the calculation is based on a temperature value of 20 and use 343 m/s as 
the speed of sound (you can adjust the calculation based on realtime temperature value).  
Since the speed of sound is in m/s and the detection value from the ultrasound sensor is 
in μs. To convert the detected distance to cm, we need to convert speed of sound to cm/ 
μs using the following formula: 

- Speed of sound (cm/ μs) = 343 (m/s) * 100 (cm/m) / 1000000 

In the following line of code: 

- Float distance = float(duration)/2 * Sound_Speed 

To calculate the distance (floating point value) from the reflecting object, the duration 
(sound wave traveling time from sensor to reflecting object and back to sensor) is 
converted to floating point value, divide by 2 and multiple by the speed of sound to 
yield the distance. 

In the main program loop(), after acquiring detected value from the sensor and calculate 
the detected distance, the result is used to control the LED’s flashing rate and output to 
the Serial Monitor using the Serial.Print() function. 

While the “delay(intervaltime)” function within the main program loop() is called with a 
constant (intervaltime), the varying time needed to process and capture sensor data 
create a fluctuating time to loop through the code. The flashing LED uses a counter 
approach to control the flashing rate. 

Several global variables, LED_ON_count, LED_OFF_count and LED_ON related to 
LED function are declared in the beginning of the program.  As the code in the main 
program loop() execute, the LED_ON_count value is incremented by one each time the 
code go through the loop, where the upper limit is set to 1 (which you can modify to 
yield different result). When the LED_ON_count reach the upper limit, the LED_ON 
variable is set to false, the LED_ON_count is set to zero and the LED is turned off. 

When the LED_ON is false, as the LED_OFF_count is increment by 1, the upper limit 
is now set by the distance, using the value from “int(distance/10)”.  Since the time 
delay for the main program loop() is set to 100 ms, when the detected distance is 200 
cm, the LED will remain off for about 2 seconds.  You can modify the code to use 
different value to see different result. 



86Duino 
www.86duino.com 

-17- 

As the code is running, output from the Serial Monitor and LED flashing rate can be 
used to view the detected distance, as shown in the figure below: 

 

From this exercise, you learn about how ultrasound sensor function.  Think about a 
different approach, using interrupt or the digitalRead() function to get sensor data from 
the Echo signal pin.  Instead of the flashing LED, think about replacing the flashing 
LED circuit with a Buzzer circuit to create a simple obstacle avoidance system with 
audible warning, such as backup obstacle warning system for automobile.   

 

 


