86DuUIND

www.86duino.com

Intro to App Inventor and Application
with Bluetooth Connectivity

1. Introduction to the App Inventor Development
Environment

App Inventor is a web-based online graphical mobile application
development environment for Android devices, where you can create an
application by simply drag and connect a series of function blocks.

To develop application using App Inventor, you can use one of the

support browsers pointing to the following URL:

- http://ai2.appiventor.mit.edu/

You need a Google account to use App Inventor. After login to the
system using a Google ID, from the App Inventor Designer menu, you can
click on Start new project to start a new program, as shown below:

Fi .i MIT App Inventc;reé Project ~ Connect ~ Build ~ Help ~

New Project B Delete Project

Projects

Name Date Created

Project name: test

Cancel OK

Enter project name and click OK to continue.

86DuUIND

At this point, the App Inventor Designer is showing 4 separate sections,

Palette, Viewer, Components and Properties.

http://appinventor.mit.edu/explore/designer-blocks.html

Viewer:

MIT App Inventor 2
o eta

Palette:

This section contains different components which you can
drag onto the Viewer to add them to your application. This is
a familiar feature to the .NET developer.

This section provides a preview screen for your application
where you can drag and drop components from the Palette
section onto the screen and arrange the components to see
how your app will look like.

Components: This section lists all of the components that are added to

your application. By clicking on a component, the selected
component’ s properties are shown on the Properties

section.

Properties: This section displays all of the properties associated with a

selected component and provides the interface for you to
edit and change the setting or value for each of these
properties.

Palette

User Interface

Viewer Components Properties

86DuUIND

www.86duino.com

2. First sample app

In this first exercise, we will go through the steps to create a simple

application where you can click a button to change display character.

From the App Inventor menu, click on Start new project to create a new

project and enter ClickMe as the project name, as shown below:

€ @ si2appinventor.mit.edu

Ec & B - sing PluaB ¥ & =~ | =
MIT App Inventor 2 Projects Connect Build Language Help My Repot 86duino@gmail.com
= Beta " o . Project: Guids an lssue .
Projects.
Name Date Created Date Modified v

Project
name

foroime

Cancel OK

After clicking on OK to create the app, the App Inventory design and
layout screen is shown. This is where you can add components and
change the layout for the app.

We need a button for the app. From the Palette section, click and drag

the Button component onto the Viewer section to add the button control
to the project as Buttonl, as shown below:

€)@ w2appinventocmiteaus | % - B sl 4 w- =
?. MIT App Inventor 2 Projects Comect Buld Language Help My
= Beta s
Clickie eEnees |
Palette Viewes Components Properties
User Interface [Tisplay hidden components in Viewer 8 T screent Button?
@ Button L BackgroundColor
¥ Checkaox Snad I oetaun
] DatePicker Teat for Bution1 Enabled
c]
W image J
Ll FontBold
ListPict Fontltalic
Fontsize
FontTypeface
cetault
TextBox Image
Bl TimePicker
Snape
weoViewer
. defautt
ShowFeedback
Layout
Rename Delete c]
Media
Drawing and Animation Media
Sensors Upload F e

86DuUIND

From the Components section, click and select Buttonl. At this point,
the Properties section to the right is associated with Buttonl. From the
Properties section, change FontSize to 20 and Text property for Buttonl
to “Click Me" , as shown below:

You can also change the button’ s width and height from the
Properties pane. Click on the Width property and select the Fill parent
option, as shown below:

Width

OAutomatic
{®Fill parent
g pixels

Cancel OK

Click on the Height property select the pixels option and enter 50 pixels
for button height, as shown below:

OAutomatic
OFill parent
@®@so pixels

Cancel OK

From the Palette section, click and drag the Label component onto the
Viewer section to add the label control to the project as Labell. From the
Components section, click and select Labell. From the Properties section,
clear the entry in the Text properties, set the Width to fill parent and the
Height to 50 pixels, as shown below:

86DuUIND

www.86duino.com

Viewer

[oisplay hidden components in Viewer

Screenl

Click Me

In the previous steps, we put together the app’ s layout in Designer
mode and have not implemented any program logic. App Inventor has 2
different view modes, Designer and Blocks modes. In Designer mode, the
Viewer section provides a graphical interface to view and design the
app’ s layout. In Blocks mode, the Viewer section provides a graphical
interface where you can construct the app’ s logic and function by
dragging different component from the Blocks section.

There are multiple group of controls with different functions and
features. The Control group provides different conditional flow control

(If-then, Do-While, for-each &etc.) logic blocks, as shown below:

72 MIT App Inventor 2

€ @ ai2.appinventor.mit.edu/5 Evc & b PAea ¥ A =~ =
MIT App Inventor2 ~ Frojects Connect Buil Languags Help My Reportan 6l gmail.
= Beta Projects d Issue
cowe EEOCERCT
Blocks Viewer
© Builtin
Bcontrol
Hogic
Bwvan
e foreach (LT, T from | €3
Wuists o 8
W colors by | @
W variables do
W procedures
© [screent for each ([11) in list
Ssuttom do
Any component
while test
do
Rename Delet:

86DuUIND

www.86duino.com

The Logic group provides the following:

72 MIT App Inventor 2 x
D ai mit.
On
w pp Inventor o s
o 2 :

Beta

T

/#55984865494 BEvc| &/~ B-sng
Help My
. Projects Guide

PleB ¥ A =~ =

Report
an
Issue

Connect Build Language 86duino@gmailcom | A

© Buitin
H control
[Logic
Buatn
Mrext not
Buists
B colors
W variables

IR

il

M procedures
& [screent

Bsuttont

\AlLabel

U

@ Any component

v

The Math group provides the following math function blocks:

72 MIT App Inventor 2 x

U3 mit.edu/ 55084265404 Evc| &/- B-simy PleB ¥ & = - | =
S/
R 13
P INVeNor o jieis Connect Build Language Help My ot Beduino@gmailcom | A
2 v v B v . Projects ~ Guide | ' v
= Beta

T - [o

Blocks Viewer

© Builtin
Hcontrol E
m ol
Bvatn
=
Wuists
W colors
W variables m
M procedures

& Dommen =]l
Bauttom
AlLaben

@ Any component

0

The Text group provides the following text and string handling

components:

86DuUIND

www.86duino.com

72 MIT App Inventor 2 x

€) ® ai2.appinventor.mit.edu/#5592486549495808

ﬂ pp Inventor o eic Connect Build
2 o = o

Beta

T - [

Blocks

© Builtin
Econtrol
M Logic
B matn
Hrext
Buists
B colors
W variables
W procedures
© [screent
Hauttont
AlLabelt

@ Any component

Projects

Issue

ea

o) join

length
is empty
compare texts

trim

gllllluf

starts at text
piece

contains text

piece

U

Evc| &/- |B-sing P ¥ A &~ =
R T
Language Help My . 86duino@gmailcom | A
Guide 5

v

The Variables group provides function blocks that work with different
variables needed for the app, as shown below:

72 MIT App Inventor 2 x

€) @ ai2.appinventor.mit.edu/#5598486549495808 | & - 8- sing Pl ¢ & v =
T a
T App Inventor Projects Connect Build Language Help My ea;:‘on S6duino@gmail com ~
o ’ : ’ . P e Oude " :
Beta
ciowe [I [omre 0]
Blocks Viewer
© Builtin
M control initialize global [[E) to
B Logic oy
M matn
= eI
Wiists
B colors DRLIE LY TE iname)
in
B variavies
M procedures
8 [screen o) initialize local [{E1) to
Bsuttont in
AlLabent 1
Any component 3
v

In the following section, we will go through the steps to add program
logic to the app from the Blocks mode, adding program function blocks
to the ClickMe app:

e From the Screen1\Buttonl component group, click on the “when
Buttonl.Click” component block and place it on the Viewer section, as

shown below:

86DuUIND

www.86duino.com

MIT App Inventor 2 x
-4 PP

Blocks

© Buitin
Econtrol
B Logic
Wyan
Wrext
Buists
Ecoiors
W variavies
W procedures

© [screem
Bsuttom

AlLaben
® Any component

T [[

Viewer

€) @ ai2.appinventor.mit.edu/#5598486549495808 B vc| &/~ |B-sing Pl 8 A& =~ =
MIT App Inventor 2 Projects Connect Build Language Help My Report geduino@gmailcom
5 v v v 9 . Projects Guide 5

Issue

when Click
do

Ao Ao

0

e From the Screenl\Labell component group, click on the

Labell.Text to” component block and place it on the Viewer section, as

shown below:

]
Q
2
L
@
H

MIT App Inventor 2 x
-4 PP

€) @ ai2.appinventor.mit.edu/#5598486549495808
N

Pl ¥ A - | =

n

| Ta

Blocks

© Buittin
Econtrol
B Logic
Wwan
Wrex
Wiists
Ecoiors
W variables
W procedures

8 [screent
Bautiont

AlLaben

© Any component

B

T [

Viewer

TSSO S

when Ciick

A1 Ao

1]

v

set

e From the Built-in\Text component group, click on the text string

component block and place it on the Viewer section, as shown below:

72 MIT App Inventor 2 x

€) @ si2.appinventor.mit.edu/#5592486549495208 EEvc| &/- B-sny Pl B ¥ &4 =~ =
S/
o Bew ros —

e R ==

Blocks

Viewer

© Buitin
Econtrol
B Logic
Bt
Wrext
Huists
Ecolors
B variables

when (EGTLINED -Click
do) set (EIIED . (S to

W procedures
© [screent
Hsuttont
Ao Ao

AlLaven

1]

@ Any component

v

e Click on the empty box between the double-quotes on the text string

component and enter “Hello World!" , as shown below:

86DuUIND

www.86duino.com

72 MIT App Inventor 2 x
edu/#5: 5808 - ~ Bing -

€)® BEvc & L4 PlirB ¥ A # =
o esue
ErT— T =

ol st (EECIND . A to
L=

gl Hello World!

B variavies

W eroces
8 [screent

Hsuttom

AlLaben &o A 0 @
i

Each of the program function block has different shape for the
connection and receptor, used to control program flow. When one of
these function blocks is incorrectly placed, warning and error are shown
on the Viewer section, such as the following:

72 MIT App Inventor 2

€) @ ai2.appinventor.mit.edu/#55024 Evc| &/- |B-sng APl & A& = - | =

~

MIT App Inventor 2 Connect Build Language Help My Report 86duino@gmail.com
5 v v v v - Projects Guide an lssue v

T - [=

Blocks Viewer

© Buittin
Becontrol
M iogic
Buatn
Brext
Wuists
B coiors

Gl set (EITIND . AT © |, ° GER
&

W variables
N W procedures
© [screent
Hauttont
AlLaben
@ Any component 0y} Ao
Show Warnings

v

The "isempty” function block is attached as part of the program flow
and cause the warning message shown next to the yellow triangle. To
remove the “isempty” function block, you can click and drag the
component to the trash can at the lower right corner of the screen. Or,

simply click to select the component and press the delete key.

With only one button and program logic for a single click event, we
cannot demonstrate interaction with the program effectively. Let" s add
a second button to clear Labell text content.

From Designer mode, drag a Button control from the Palette section to
the Viewer and perform the following:

e Change the FontSize property to 20

86DuUIND

e Change the Text property to Clear
e Change the Width property to Fill parent
e Change the Height property to 50 pixels

From the Blocks mode, add the following function blocks (as shown in
figure below):

e "When Button2.click” from the Screen1\Button12 component

group
e "“SetLabell.Text” from the Screenl\Labell component group

e Text string component from the Built-in\Text component group

when (TTRA) Ciick

do) set (I to |
S~
e

3l Hello World!

when (TT8) Ciick

do| set (EIZIED S to | °
S
P

Ao Ao

At this point, we have all of the intended function for the app. Before
building and testing the app, we need to establish connectivity to a device

or an emulator.

For this exercise, we will use a real device. To use areal device, we
need to install the "MIT AI2 Companion” app from the app store.
Install and launch the app on the target device. After the MIT AI2
Companion app is launched, you have the option to enter a six digit code

or use the scan QR code option to connect to App Inventor, as shown

below:

MIT App Inventor 2. f

type in the 6-character code
~or-
scan the QR code

-10-

86DuUIND

From the App Inventor’ s Connect menu, click on Al Companion to

bring up the following screen:

Launch the MIT Al2 Companion on your device
and then scan the barcode or type in the code
to connect for live testing of your app

Need help finding the Companion App?

Your code is:

wdbvgh

Cancel

From the target device, you can enter the six digit code, or scan the QR
code to establish connectivity to the App Inventor. Once connected, the

app will display on the device, as shown below:

With connection to the App Inventor established, the changes you
make to the app will reflect on the device in real time.

While the MIT AI2 Companion app can connect to App Inventor for
testing and debugging, the app is not installed to the device. Once
disconnected, the app will not remain on the device.

Let" s go through the following steps to install the app to the device:

e From the App Inventor Build menu, click on App (provide QR code
for .apk) to build the app. App Inventor shows the following progress as
it build the app.

-11-

86DuUIND

www.86duino.com

le

IT App Inventor 2 Exlecks Connoct Buid Language
Beta

_

€) @ s2appinventormitedu/ss550A%5I = c

PluaB ¥ A e

\\\\\

o After the build is done, a QR code is provided for the MIT A2
Companion to install the app, as shown below:

Beta

Clea

IT App Inventor 2 Projecs Connect Buid Language

\\\\\\\

€) ® s2appinventormitedu/ 2559642543 = c - B

e After scanning the QR code using MIT AI2 Companion, the following
screen is shown on the device, asking for permission to install the app.

Another option to install the app is to compile and download the .apk
installation file, download and copy the file to the target device’ s local

storage and install the app manually:

-12-

86DuUIND
www.86duino.com

e From the App Inventor Build menu, and select the "App (save .apk to
my computer)” option to build the app.

e After the build process is completed, App Inventor provides the
option to download the generated .apk file, as shown below:

7 MIT App Inventor 2 x

€ @ s2appinventormitedu/s: 494 =-c $ v P B ¥ A ® =
IT App Inventor 2 Projecs Connect Buid
Beta
Savent - | Add Screen Opening ClickMe.apk - Designer I Bocks |
Vou have chosen to open: .
| ClickMe.apk
interface [isplay hidden component B ttom
tton from: hitp://ai2.appinventor.mit.edu IckgroundColor
jeckBox What should Firefox do with this file? Default
tePicke Clic O Openwith | Browse... bled
age ® SaveFile
ntBold
bel (] Do this automatically for files like this from now on.
tPicker -
tView cl ok || cancel
sier g atsize
hsswordTextsox
e FontTypeface
defautt
joner
xtBox 0
<

-13-

86DuUIND

www.86duino.com
3. Second sample app

In this second exercise, let’ s create an app that connect to the
EduCake using Bluetooth.

From App Inventory Project menu, click on Start new project, as shown
below, to bring up the new project wizard:

72 MIT App Inventor 2 x

€) @ ai2.appinventor.mit.edu/#5508486549495808 BEyc¢ ¢ - ~ Bing
\—A
MIT App Inventor 2 Projects Connect Build Language Help My
o v v v v v Projects
“ eta
My projects i
ClickMe
Start new project
Palette Import project (.aia) from my computer ... Components
User Interface Import project (.aia) from a repository ... © [screent
@ sutton Delete Project auttor

Project Bluetooth_Connect l
name:
Cancel OK

Enter “Bluetooth_Connect” as project name and click OK to continue.

From the Palette section, select and drag the ListPicker component to
the Viewer section, as shown below:

€) @ ci2.appinventor.mit.edu/#6442740872118272 EEvc| &/ |B-sing Al & A & =
MIT App Inventor 2 Projects Connect Build Language Help My Reportan 86duino@gmail.com 2
e v v v v v oy Guide i B

Bluetooth_Connect Screent I Add Screen [Remove Screen
Palette Viewer Components. Properties

User Interface Coisplay hidden components in Viewer © [screent ListPickerl

oo 7 _ e o

& CheckBox 2 [Deraut

DatePicker ? Textfor ListPickert ElementsFromstring

@ image 3

[A] Label Enabled

& ListPicker

_ FontBold

= Listview O

A Notifier Fontltalic

%3 PasswordTextBox

W sicer FontSize

140

B spinner

- FontTuneface @
< >

Select ListPickerl in the Components section and change the

associated properties as follow:

-14-

86DuUIND

e Change the Text property to “Select Bluetooth Device” and
FontSize to 20.

e Change the Width property to “Fill parent” and Height to 50 pixels

The screen in the Viewer section should looks similar to the following:

Select Bluetooth Device

The ListPicker component provide similar function as Button that
function like menu options, where you can click on one of the selection to
get to the specified option, such as the following:

Bluetooth_Connect

Option 1

Option 2

Option 3

Option 4

There are different methods to configure the ListPicker. One of the
method is the ElementsFromString Properties, as shown below:
Properties
ListPicker1

BackgroundColor
[oefautt

ElementsFromString

Enabled

The other method is programmatically within the app which provide
more flexibility, as shown below:

A
ﬁ' ListPicker1 I ElementsFromString ~ Ium Option1,0Option2, Option3,0Option4 '

Here is another method:

-15-

86DuUINDO
www.86duino.com
EE ListPicker1 ~ M Elements ~ NG @ - 1=« (Il Option 1 ¢

Let" s continue with the app. From the Connectivity component group
in the Palette section, select and drag the BluetoothClient component to
the Viewer.

Since the BluetoothClient component does not have user interface,
it" s anon-visible component and not shown on the Viewer. You can
see the BluetoothClientl component is added in the Components section,

as shown below:

Drawing and Animation Select Bluetooth Device DelimiterByte

From the User Interface component group in the Palette section, select
and drag a Button control onto the Viewer and change the button
properties as follow:

e Change the Text property to “Click Me” and FontSize to 20

e Change the Width property to “Fill parent” and Height to 50 pixels

e Change the Visible property to hidden

At this point, the App Inventor screen should looks like the following:

-16-

86DuUIND

www.86duino.com

72 MIT App Inventor 2 x
€) @ si2.appinventor.mit.edu/#644274087211827; EBvc|l & - B-sing PaB & A &~ =
MIT App Inventor 2 Projects Reg
Beta
Bluetooth_Connect Scroen + I Add Scroen I Romove Scroen a
Palette Viewer Components Properties
User Interface [Cpisplay hidden components in Viewer 8 [screem Button1
@ sutton ListPickert BackgroundCok
¥ CheckBox Sorel Zsuttont B oetaun
B oatepick 3 BuuetoothCiient1 I
e Select Bluetooth Device J"
4 image 9
FontBold
Al Label -
ListPicker -
= Listview]
A Notifier Fontsize
*+ PasswordTextBox -
W sicer FontType:
default
B spinner
Text: Imagy
Bl TimePick
@ webviewer Shape
L default
Lavout ShowFeedback

Next, click on the Blocks button (from the App Inventor menu) to switch
to Blocks mode and add programming logic to the app.

From the Screenl\ListPickerl component group, select and add the
following components:

e "when ListPickerl.BeforePicking”

e ‘“set ListPickerl.Elements”

/\ when ([(ESFEZLIED BeforePicking

A1 A1

L]

From the Screen1\BluetooothClientl component group, select and add

the “BluetoothClientl.AddressAndNames” component, as shown
below:

-17-

86DuUIND

www.86duino.com

when ([EEEHETEEIES BeforePicking
do set
S

/A0

A0

[CistPicker1 - J Elements - I8

¥ BluetoothClient1_+ Ji AddressesAndNames ~ |

U]

The above group of components provide the function to retrieve the

list Bluetooth devices paired with

the Android device.

Continue and add the “when ListPickerl.AfterPicking” component

from the Screenl\ListPickerl component group to the Viewer section:

when (EEFEEEIED BeforePicking
1 Y UstPicker1 + W Elements +)
-y

when (EEEEEEIED AfterPicking
do

A0 A0

BluetoothClient1 ~ IAddressesAndNames B |

1]

The ListPickerl.AfterPicking component is an event handler after an

item is selected.

From the Built-in\Control group, select and add the "If then”

component, a conditional handler,

to the Viewer section:

when (EEENEFIES BeforePicking
- B CstPickert + i Elements + 0
=

when (EEEHTEIED AfterPicking

M1
Show Warnings

A0

BluetoothClient1 * IAddressesAndNames B |

-18-

86DuUIND

www.86duino.com

Next, select and add the “call BluetoothClientl.Connect address” and
“ListPickerl.Selection” components and link to the “if" condition:

when ([ESGEETEIIED BeforePicking

doN sct (ERETHED - EEIEISED o ~ W AddressesAndNames -

when (ESEETEEIED AfterPicking

do N o i (N BluetoothClient1 » RO
ELLoNe] ListPicker1 + [Selection « ||
then

A0 A0

Next, add “Buttonl.Visible” component (from the Screen1\Buttonl
component group) and “true” component (from the Built-in\Logic
component group) and link to the “then” condition:

when (ESGEIETEIIES BeforePicking

when (EEEHETEEIED AfterPicking
do o if (=N BluetoothClient1 + BeZIyT s

address |

then

A0 A0

The 2" group of components, highlighted within the red rectangular
frame, is part of an event handler to change the “Click Me” button

(Buttonl) from hidden to visible after a Bluetooth device is selected from
the list.

Next, add the “Buttonl.Click” component (event handler for the
“Click Me" button) to the app:

-19-

86DuUIND

www.86duino.com

when (ESESEEIED BeforePicking
+ RS ListPicker1! + M Elements v G
-

BluetoothClienti - i AddressesAndNames -« ||

when ([EEGEHETEIIED AfterPicking
do (o] if (N BluetoothClient1 ~ BefJy[)=Te:
address

thens set ETTTIED - UEEEED to [

when ([EEOIEED Click
do

A0 A0

Add the “BluetoothClientl.SendText" and the blank text entry
component to the app:

when (EEEHTEIIED BeforePicking

when (ESEHETEIED AfterPicking
do | (o) if (| N BluetoothClient1 v Befly[s

address

when (EIGEOIIED -Click

Lo TN BluetoothClient1 v BEEGGIEG
text

/N0 A 0

From the Viewer section, click on the black text entry component and
enter the character “a” :

when (EEEHETEIED BeforePicking
do set
L —

when ([EEGEHTIIED AfterPicking
G ([N BluetoothClient1 » oL 3

address

then set [
L —

~—

when _Click
[0 ETN BluetoothClient1 v BEENNIENG

text
S

A0 MO

The last group of function block provide the program logic to send the

text character “a” , via the BluetoothClientl connection to the
connected Bluetooth device.

-20-

86DuUIND

Next, let’ s take a look at the Bluetooth module used with the EduCake.
For this exercise, we are using one of the popular Bluetooth module,

HC-06, as shown below:

- e - . S .

A EEE CEE TS =
e ——— e - e e 5
- '

HC-06 module back view

For the exercise in this section, a HC-06 Bluetooth module and LED are

attached to the EduCake, as shown below:

abcd efgh
10000 oooo1
20000 0000 2
30000 00003
35008 00863 -
050000 0000 50 @eNB———|
TX1L.@0O 6 0000 000060
00 70000 [¢) O AD4
00 8000 000 8 0 OAD3
00 9 @) 0000 9 O0OAD2
o) 0000 0000100 OAD1
00MO00O0 000010 OAD0
00120000 0000120 D
00130000 0000130
0140000 0000140 0 +3.3V
Q0 O 000150 O RESET
~11 00160000 (oavac, _ﬂ:\
0170000 0000170 O 15RX3
(o)e) 0000180 O16TX2
GND OO0 1900 9 0 O 17 RX2
SDA 00200000 0000200018
SCLO0 210000 0000210 O 19EB1
EA042 00220000 0000220 020Ez1
EB043 00230000 00002300 32~
EZ044 00240000 0000240 031~

250000 000025
260000 00002
270000 000027
280000 O00O028
abcd efgh

21-

86DuUIND

From the 86Duino IDE, enter the following code to configure the HC-06
module:

void setup()
{
Serial.begin(9600);
Serial.printIn("Enter AT commands:");
Seriall.begin(9600); // configure baud rate to communicate
// with the HC-06 module

}
void loop()

{
// Read data from HC-06 and transmit data to the PC
if (Seriall.available())
Serial.write(Seriall.read());
// Relay data from the PC to the HC-06 module
if (Serial.available())
Seriall.write(Serial.read());

}

With the above code, communication link for the 86Duino IDE’ s Serial

Monitor can communicate with the Bluetooth interface, as shown below:

-22-

86DuUIND

Fi!e Edit Sketch Tools Help

sketch_nov01a §

oid setup()

EMECOM E1Rz3
Serial Monitor =

Serxial . begin(9600);
Sexial.println("Enter AT commands:");

Sexiall .begin(9600); // SRTEFD HC-06 ENAVERE (TR 9600)
}

void loop()

{1/ SEEY HC-06 B IBMEERIER
if (Sexiall .available())

v | Autoscroll No line ending ¥ | 9600 baud

EE
if (Sexial.available())
Seriall .write(Serial.read());

Serial port 'COM21' not found. Did you selectthe right one from the Tools = Serial Port e

[
I =

After power on and prior to establishing connectivity, the LED on the
HC-06 module is blinking and remain in AT command mode, where we
can change the module’ s device-name, password, transmission speed
(baud rate) and etc., using the following AT command:

e AT: Check to see whether the module is functioning-an" OK urespond

indicate the module is functioning as expected.
e AT+NAMEaaa : Change the device name to "aaa .
e AT+PIN1234 : Change the pairing password to "1234 |
e AT+VERSION : Request the module’ s version information
e AT+BAUD1 : Change the baud rate to 1200
e AT+BAUD2 : Change the baud rate to 2400
e AT+BAUD3 : Change the baud rate to 4800
e AT+BAUD4 : Change the baud rate to 9600
e AT+BAUDS5 : Change the baud rate to 19200
e AT+BAUD6 : Change the baud rate to 38400

e AT+BAUD7 : Change the baud rate to 57600

223

86DuUIND

The first 3 AT command in the above list are commonly used.

" n

e To change the module’ s device nameto “abc” , enter "AT +
NAMEabc” . The module respond with the message “OKsetname” to
indicate success.

e To change password to 1234, enter "AT + PIN1234" . The module

respond with the message “OKsetPIN” to indicate success.

5 COM5 - olEN
AT Send
I'inter AT commands: 7
0K

Autoscroll No line ending + 9600 bavd

While it" s not necessary to reboot the module after changing the
password, you need to turn off power and restart the device, in order for
device name change to take effect.

With the app created earlier for this 2" exercise and the codes to
configure the HC-06 module, we can move on to the next step to control

an LED via Bluetooth, with the following codes:

char ch;
int LED=0; // Initialize LED status variable
void setup()

{
Serial.begin(9600); // Configure dev machine serial port

// baud rate

-24-

86DuUIND

Seriall.begin(9600); // Configure baud rate for Bluetooth
// connection

pinMode(5, OUTPUT); // Configure pin #5 as output

void loop()

{
if (Seriall.available()) // check for available data

{
ch = Seriall.read(); // when data is present, read 1 byte

if (ch =="a") // Check whether received datais “a"

{
if (LED==LOW) // check whether pin 5 is low
{
digitalWrite(5, HIGH); // set pin 5 to high
LED=HIGH; // change LED status variable to high
}
else
{
digitalWrite(5, LOW);
LED=LOW;
}
}

With the above codes in place, let’ s direct our focus to the Android
device. First, make sure the Android device is paired with the HC-06

Bluetooth module, as shown below:

-25-

86DuUIND

www.86duino.com

B

CEESF B

‘. Android &£&
Qi E R ERER
EEEE

HC-06 208

E8RKE

Next, launch the Bluetooth_Connect app and click on Select Bluetooth
Device, as shown below:

[Screen TR
BEEFRKE

After clicking on “Select Bluetooth Device” , the app launch a new
screen to show the paired HC-06 module and other Bluetooth devices, as

shown below:

86DuUIND

Bluetooth_Connect

00:15:FF:F4:0B:72 JY-MCU

08:D3:31:40:03:2F HC-06

Once connection to the HC-06 module is established, the “Click Me”

button will show, as shown below:

Select Bluetooth Device

Click Me

When you click on the “Click Me" button, the LED on the EduCake
should light up. Clicking on the “Click Me" button again to turn off the
LED.

-27-

86DuUIND

www.86duino.com

4. Third sample app

Continue from the second sample app, in this third exercise, we will add
more function to the app. If you like to save the app prior to making
changes, from the Project menu select the Save project as ... option to
save the app in a different name.

Continue from the second sample app, delete Buttonl from the

Components section, as shown below:

Deleting this component will delete all blocks associated with it in the Blocks Editor.
Are you sure you want to delete?

[|

The sample app in the previous section control one LED. In this
exercise, we will extend the app to control 5 LEDs. In addition, we will
add 3 additional push button to the circuitry.

We need to place 5 button controls, align horizontally, to control the 5
LEDs. To accomplish this, we need to use the HorizontalArrangement
layout component. From the Palette section, in the Layout group, select
and drag the HorizontalArrangement component onto the Viewer and

change the Width property to “Fill parent” , as shown below:

-28-

86DuUIND

www.86duino.com

7% MIT App Inventor 2

User Interface

Layout
™ HorizontalArrangement
B8 TableArrangement

€) @ ai2.appinventor.mit.edu/#6442740872118272

[lbisplay hidden components in Viewer

Screenl

Select Bluetooth Device

5

C| & |~ M- sing

© [screent

Media
Drawing and Animation
Sensors
Social
Storage
-,

LEGO® MINDSTORMS®

ListPicker1
| HorizontalArrangement1
&3 Button1
&3 BlvetoothCiient1

x

Pl ¥ A =~

HorizontalArrangement1 ~

AlignHorizontal
Left v

AlignVertical

Visible

showing v

Width

Fill parent

Height
Automatic

v

From the Palette section, select and drag a button control onto the

Viewer section, place the button control inside the
HorizontalArrangement component, change the Text property to “LED1"
and Height to 50 pixels, as shown below:

72 MIT App Inventor 2 x

€) @ ai2.appinventor.mit.edu/#6442740872118272 EEve &|/- |B-sng PlueB ¥ 4 = - =
MIT App Inventor 2 Project Connect Build Languag Help My Report 86duino@gmail.com o
Beta Projects Guid Issu
Bluetooth_Connect Screen? * IMdSueeﬂ. I Remove Screen
Palette Viewer Components Properties
User Interface [oisplay hidden components in Viewer © [screent Button1
@ sutton ListPicker] BackgroundColor
@ Checksox © B Horizontalarangementt B oetaut
Zutton1
DatePicker Select Bluetooth Device Enabled
3 BluetootnCiient1
& Image
. FontBold
Label =5 O
ListPicker e —
= Listview O
A Notifier Fontsize
140
%% PasswordTextBox
v

Repeat the same process to add 4 more button cont
property, LED2, LED3, LED4 and LED5, as shown below:

5
Screen1

Select Bluetooth Device

LED1 LED2 LED3 LED4 LEDS

-29-

rols with Text

86DuUIND

www.86duino.com

Depending on the device you are targeting, the 5 LED button controls
may not evenly align on the display. To fix this, you can change the
width property for all 5 LED button control to “Fill parent” .

Next, drag another HorizontalArrangement component onto the

Viewer and change the width property to “Fill parent” , as shown below:

72 MIT App Inventor 2 x

€) @ ci2.appinventor.mit.edu/#6442740872118272 e & [B-sng Pl ¢ & =i~ =
MIT App Inventor 2 Projects Connect Build Language Help My Reportan 86duino@gmail.com @
Beta v 5 v v v Projects Guide Issue -
Bluetooth_Connect Screent I Add Screen . l Remove Screen D«‘mer

Palette Viewer Components Properties

User Interface Clbisplay hidden components in Viewer 8 [Jscreent HorizontalArrangement2

s =

Layout “L'S'P‘Cke" AlignHorizontal
B9 HorizontalArrangement Screenl © I HorizontalArangement1 Left |v

n Hsuttom
B3 TableArangement Select Bluetooth Device Boutonz AlignVertical

3 Hsuttons

N LED1 LED2 LED3 LED4 LEDS Hsuttons Visible
Media 2 showing |v
Hsuttons =
9 and “IHorizontalArangement2 Width
Sensors 3 BluetootnClientt Pl parent.
Social Height
Automatic.
Storage
.
LEGO® MINDSTORMS®
v

From the User Interface component group, select and drag the

CheckBox component onto the 2" HorizontalArrangement on Viewer

and change the Text property to “Button 1" , as shown below:

x
72 MIT App Inventor 2 x
€) @ ai2.appinventor.mit.edu/#6442740872118272 B | &/ [B-sing Alra ¢ & =i~ | =
MIT App Inventor 2 Projects Connect Build Language Help My Report 86duino@gmail.com o
Beta v Y v v Projects Guide Issu v
Bluetooth_Connect Sereen * I Add Screen I Remove Screen
Palette Viewer Components Properties
User Interface [bisplay hidden components in Viewer © [screem Screent
@ Button Delbickent AboutScreen
& CheckBox 8 BHorizontalArangement1
DatePick Hauttom
atepicker i AlignHorizontal
Select Bluetooth Device Bsution2 Lgn zon!
@ Image e v
= e Hauttons —
Al Label LED1 LED2 LED3 LED4 LEDS Hsuttons AlignVertical
B Listpicker Biuttons Top v
= Listview Csutton1 e @M
A\ Notifier MicheckBox1 [0 wnite
%3 PasswordTextBox @ Bluetootncient: Backgroundimage
None.
Wl Slider
& spinner CloseScreenAnimation
Default v/
I TextBox =
Icon
TimePicker
None.
[@ webviewer "

Using the same process, add two more CheckBox a

property to Button2 and Button3, as shown below:

-30-

nd change the text

86DuUIND

www.86duino.com

x
72 MIT App Inventor 2 x
€) @ ai2.appinventor.mit.edu/#6442740872118272 EBEvc| & - B-sng Pl B 3 A = v =
Bluetooth_Connect Screeni + | Add Screen | Remove Seeen Bocks |
Palette Viewer Components Properties
User Interface Cloisplay hidden components in Viewer © [screent Screenl
% =
@ sutton A'—‘S‘P‘c"e" AboutScreen
© Mo
& CheckBox Screenl HorizontalAmrangement1
DatePlck Hsuttom)
atePicker Select Bluetooth Device Beuton2 AlignHorizontal
> Image Left v
@ imag Hsuttons
Al Label LED1 LED2 LED3 LED4 LEDS Hsuttona Allgnvertical
B ListPicker Bauttons Top ¥
= ListView Clautton Clautton2 [ClButton3] 8 Byori Solor
/A Notifier ¥ CheckBox1 |:| White
WcheckBox2
%3 PasswordTextBox eckBox BacoaIge)
W checkBox3 None.
W slider -
3 BluetootnCiientt
CloseScreenAnimation
B spinner
Default v
1) TextBox o
icon
TimePicker
None.
! WebViewer
OpenScreenAnimation
< > Default v
Layout -
fename Deet ScreenOrientation
Media i — v
—— Moo:isible comoonents,

These three CheckBox components are linked to the push-button,
which are part of the circuit attached to the EduCake for this exercise, and
will be used to indicate when each of the push button is pressed.

Next, add one more button component onto the Viewer, change the

Fontsize to “20" , width property to “Fill parent” and the Text property
“Disconnect” , as shown below:

7= MIT App Inventor 2 x

to

€) ® ai2.appinventor.mit.edu/#4535108364140544 B¢ & v B-sng Al B ¥ A4 = - =
Buciooi Comeet_ EEBICTENETS — — - Cocog
Palette Viewer Components Properties
User Interface [Clbisplay hidden components in Viewer © [screent Screen1
@ Bsutton L4 ListPicker1 AboutScreen
e M
@ Checkaox Screent HorizontalArrangement1
oatepick Hsuttom
&1 .
aepicker Select Bluetooth Device Boutton2 oz
@ image Left |v
& image Hsuttons
A] Label LED1 LED? LED3 LED4 LEDS Hauttons Aligniertical
B Listpicker Bauttons Tr I
= Listview CButton1 Clsutton2 Clutton3 8 Bhori olor
/A Notifier . ¥ CheckBox1 [l White
W CheckBox2 Backgroundimage
%3 PasswordTextBox
& CheckBox3 None.
Wl slider 9
& spimer ~ Buttont CloseScreenAnimation
P 3 BlvetoothClientt Default =
I TextBox L
icon
TimePicker
None.
[@ webviewer
OoeoScrsendaimation 1)

When the application is launched, prior to establishing Bluetooth

connectivity, the button controls for the LEDs, CheckBox controls for the
push-button and the Disconnect button should not be visible. To hide
all 5 button controls for LED, we can simply change the Visible property
HorizontalArrangementl component to “hidden” , as shown below:

-31-

86DuUIND

Components Properties
© [screenl HorizontalArrangement1
ListPickerl
AlignHorizontal
e HorizontalArrangement1 Left v
= Button1
AlignVertical
= Button2
Top
== Button3
——
«= Button4 it

== Button5

® HorizontalAmangement2 ~ Width

&I CheckBox1 Fill parent
/| CheckBox2 Height
&I CheckBox3 Automatic

Doskboml.

To hide all three CheckBox components, change the Visible property
for HorizontalArrangement2 component to “hidden” . To hide the
Disconnect button, change the Visible property for Button6 to

"hidden”

Next, from the Sensors component group in the Palette section, select
and drag the Clock component onto the Viewer. The Clock component is
a non-visible component and does not shows up on the app screen, as
shown below:

Viewer

Eblsplay hidden components in Viewer

Select Bluetooth Device

Non-visible components
D

BluetoothClient1 |Clock1

-32-

86DuUIND

Change the following properties for Clockl component:
e Uncheck the TimerEnabled checkbox

e Change the TimerInterval property to 10 millisecond

Components Properties
e Screen1 Clock1
ListPicker1

TimerAlwaysFires
= HorizontalArrangement1 [v]

= Button1 TimerEnabled

J Button2 [l

« Button3 Timerinterval

« Button4

« ButtonS
e HorizontalArrangement2
/| CheckBox1
/I CheckBox2
/| CheckBox3
= Button6

3 BluetoothClient1

Clock1

Next, with all of the required layout components in place, we will switch
to the Blocks mode to add programming logic.

Similar to the app in the previous section, after establishing Bluetooth
connectivity, we need to make the 5 LED button controls, 3 push-button
Checkbox controls and the Disconnect button visible, and set
TimerEnabled property for Clockl to true. To do this, we need to change
the Visible property for HorizontalArrangementl (for the 5 LED button
controls), HorizontalArrangement2 (for the 3 push-button Checkbox
controls) and Button6 (Disconnect button) from hidden to visible, via the

following function blocks:

-33-

86DuUIND

www.86duino.com

MIT App Inventor 2
Beta

Projects ~ Connect v Build Help ~

MyProjects Guide Reportanissue &) 86duino@gmail.com v

T T [R T

Screent =4 Butiond +)

= ListPicker1

8 P horizontalArangement1

ListPickerd -

address

Blocks Viewer
Built-in @
B control when (ESIRTHIER BeforePicking
Biogc - Gl UistPicker1 - Jif Elements - Ji0]
Buatn -
B rext when (IEEEIIED AfterPicking
Wuists do (o if (N BluetoothClient1 + BelJy ¢
W colors
forzontal isible '
Evariables {1y =Y HorizontalArangementi + i Visible + JXGNC
Mprocedures set GE e

ent2 -~ Y Visible ~ R

‘
P i1 = abled Tee
(S Ciock ~ Y Tmertnabied - JoG e -

Hsuttom

Hsuttonz A0 A0
Hsuttona
Hsuttons

Hsuttons

Next, we need to add function block to control the 5 LEDs via the
Button.Click event and the BluetoothClient.SendText, as shown below:

when ([EIEOIEED Click
L IGETN BluetoothClient1 » BT

~—

when ([ETIYAE Click
Lo ETN BluetoothClient1 v BT

text
S
when (EEIIGES Click

([IGETN BluetoothClient1 v BEELRIEE

text
S

N0 A0

when (EEIEIE Click
L IGET N BluetoothClient1 » B

S

when .Click
do call EECEGEENTIES -SendText

text
~—

I

When each of these 5 buttons is clicked, the BluetoothJClient

component send the corresponding value (1, 2, 3, 4 or 5) to EduCake to

turn on the associated LED.

Next, the app needs to have a way to check whether any of the 3

push-button, part of the circuitry attached to the EduCake, is pressed,

using Clock1.Timer event to send polling signal to EduCake, as shown

below:

-34-

86DuUIND

www.86duino.com

when (YU Click when (TR Ciick
- BluetootnClent + B ds - N BluetoothClient + Jdes

text
S

~—

when (EEHYAED -Click when "Click
<[TN BluetoothClient] * B eli :
60| call CITEREeTIAND SendText

text [‘B3
S text
=

when _Click
L ETE BluetoothClient1 » IESIERGIE

text
S,

when [LISSIED -Timer
LT BluetoothClient1 » ESTERGIE

L text . .
A0 A0 @

l Show Wamnings

The Clockl.Timer event is set to fire every 10 millisecond. Each time the
timer event fires, it triggers the BluetoothClientl component to send the
character "a" to EduCake.

Next, we need a function block to check whether there incoming data
received by the BluetoothClientl with the following function block:

when (OB .- Timer
-| Bl BluetoothClient1 » BEE LIk

Then, add the following function block to retrieve the received data and

enable the corresponding CheckBox:

-35-

86DuUIND

www.86duino.com

fExt ‘9’

O call EEEACEIIES BytesAvailableToReceive 0]

then | set LIIENC 3 to =N BluetoothClient1 » BEESEIVAE
numberOfBytes [(B

Q. | (54 globaltext * |l = * RN 1 B]

(-1 =¥ CheckBox1 * B ecked » G true -
S

’
.
3
.

= Wl CheckBox1 + B ecked v WGM - false -
S,

= 1
@ L globaltext +)| = - N2 & }
2 v ecked

1= I CheckBo (
S

3
.
!
.

-5 Sl CheckBox2 * ecked » WG false -
L —

OF LT global text -)| = * K3 E

|y Sl CheckBox3 ecked v (v
S

- Sl CheckBox3 + B ecked v v
S,

Next, we need to add function block for Button6, the Disconnect button.

When Disconnect button is clicked, in addition to disconnect the
Bluetooth connection, the app needs to hide the 5 LED button controls
and the 3 push-button CheckBox and disable Clockl from triggering
timer event, using the following function block.

when (EIELEES Click

(|| BluetoothClient1 » B¢
=4 ForizontalArrangement1 + O faise -

==Y ForizontalArrangement2 + J Visible ~ JC; false
B A ":W.
==Y Buttons - J Visible ~ JCR, faise

You may be wondering why Clockl component is needed as part of the
process to communicate with the EduCake. The Clockl component is
used to address timing issue associate with sending and receiving data.
Within a mechanism to control timing, data transmitted to the EduCake
via the Bluetooth connection is not predictable, can be too fast for the
EduCake to respond to and cause data to be lost. Instead of transmitting
data in an unpredictable manner, the app on the EduCake is written to
wait for the Android device to request data to be send by transmitting the
character "a" . When EduCake received the character “a” , it will
return the intended data, where the Android device is ready to receive the

data.

-36-

86DuUIND

www.86duino.com

Next, we will attach 4 more LEDs to the EduCake and have 5 LEDs total
on the circuit and another 3 push-button, as shown in the circuitry below:

PN R Y
d efgh
;OOOO OO;
ooe -
3o?c Qo 3 @ 2)
oL e) O O
$§1o ngc gnoog
O o0 e OO0 6 O
ZO/S?gc Qoo'lo
~3 0 @ 00 80
40./83,0 @59
~5 0 @1 oe ga' O 010 0
R XX £k X X T Qoono
70812000 000012
80 000 Q000130
~9 O @14 0000140 0 +33V
~10 00150 0000150 O RESET
~11 00 16,0 0000160 0O 14TX3
120017 0000170 O 15RX3
~13 00130 O000180 O 16 TX2
GND O @ 140 OO000190 O17RX2
SDA O O\20 0000200 O 18EA1
SCLOO %1 O 00002100 19EB1
EA042 OO 2 0000220 020E21
EB043 OO0 230000 0000230 O 32~
EZ044 00240000 0000240 O 31~
250000 O00O02s5
260000 000026
270000 000027
280000 O00O028
abcd efgh

From the 86Duino IDE, enter the following code:

char ch;
int LED[5]={0,0,0,0,0}; // 1 5 {ERIIARBE 5o 7= 2 FE 51 4

void setup() {
Serial.begin(9600); // ETEXEER EMEMH COM &
Seriall.begin(9600); // BITEXEEREMEES BHANEE
for(inta=2a<7,a++) // o EE DL ERNISE LR
pinMode(a, OUTPUT);
for(inta=7,a<10a++) // 7t EE BRI SE AR
pinMode(a, INPUT);

\ﬂll
A
R

XK

R E

ik
-

d

void loop() {
if (Seriall.available() > 0)

{

-37-

86DuUIND

ch = Seriall.read();
if(ch =="'a") // %% Android Imf&E%"a" @2k
{
if(digitalRead(7)) // 188 pin7 L2 EL T
Seriall.print("1");
else if(digitalRead(8)) // 15 pin8 #ZEAZ &L H
Seriall.print("2");
else if(digitalRead(9)) // 1Bfl pin9 #ZEAZ &L H
Seriall.print("3");
else

Seriall.print("0");

}
else
{
if(LED[ch-'0"-1]==LOW)
{
LED[ch-'0'-1]=HIGH; // f#*F LED BYAREE
digitalWrite(ch-'0'+1, HIGH);
}
else
{
LED[ch-'0'-1]=LOW;
digitalWrite(ch-'0'+1, LOW);
}

In the above code, it' s written to handle character value. The
simplest method to convert to numeric value is to subtract 0. The code
uses a 5 position array to handle the 5 LEDs, with the range from 0 to 4, by

subtracting 1, we get the corresponding value, with the following line of

-38-

86DuUIND

code:

if(LED[ch-'0'-1]==LOW)

On the Android device, when the LED1 Button is click which cause the
apptosenda "1" toEduCake,it’ s corresponding to the first position
in the array, whichis “0" .

With the above code running on the EduCake, clicking on LED1 through
LEDS on the Android device should turn on the corresponding LED on the
EduCake. Pressing the push-button on the EduCake should cause the
corresponding CheckBox to indicate the button is pressed.

Select Bluetooth Device

LED1 LED2 LED3 LED4 LEDS

|DButton1 [Jutton2 [JButton3

Disconnect

-30-

