86DuUIND

Using Matrix Keyboard with EduCake

1. Matrix Keyboard Introduction

In addition to the sensor, digital to analog conversion and serial port
applications in the earlier application notes, matrix keyboard is
another common interface we can use to interact with the 86Duino
EduCake.

For an automation-control application, one of the key component is
the user interface to the system that enables the user to send
command and control signals to the system. The matrix keyboard
with multiple inputs is an useful interface to send command and
control signals. Matrix keyboard function is similar to the push button

-1-

86DuUIND

input combines with the digitalRead() function, covered in the earlier
application note. Programming a single push button control is quite

different from a matrix keyboard with multiple input.

Matrix keyboard has been around for quite sometimes, and is readily
available in the market in different sizes, configurations and
mechanical form factors. There are off the shelf smaller matrix
keyboards, 3x4 and 4x4, that are fabricated with 12 and 16 keys with 0

to 9, along with *, # and other marking.

For project with small number of simple control, such as to turn the
device on/off, reset the device and to change the device' s operating
mode, where only a few buttons are needed, you can simply attach the
required number of push button and associate each button to a digital
I/O to capture user input.

For project with complex control that requires large number of input
signals that are different, matrix keyboard is a good solution that can
provide relatively large variation of input that utilize small number of
I/O pins.

Programing a 4x4 matrix keyboard is similar to programming a 4x4
LED matrix, which we covered in an earlier application notes. Instead
of using a group of I/O pins to control signal output to the LED matrix,
programming for matrix keyboard is focusing on capturing I/O pins

input signal and translate these signals into commands, as shown in

figure-1.
0 f0~3 3
P A
@) O (o) o]
L 007
O > b
L 007
5)0~3 A0 4
O
A Ay awe
3 o ” ¢ » »

Figure-1. 4X4 matrix keyboard wiring.

86DuUIND

Using push button control, which requires one I/O pin for each button,
it takes 16 I/O pins to provide 16 button control. A 4x4 matrix
keyboard with 16 input controls only occupies 8 I/O pins. The
electronic circuitry to implement matrix keyboard is different from a
simple push button control. Each of the 16 buttons on a 4x4 matrix
keyboard has two pins, where one of the pin is connected to 3 other
buttons on the same row and the other pin is connected to 3 other

buttons on the same column, as shown in Figure-1.

The process and codes to read the status for each button on a matrix

keyboard is more complex than the simple push button control, where
each button is linked to one I/O pin. To read the status of the buttons
on a matrix keyboard, you need to write codes to scan and read button
status one row at a time or one column at a time. Figure-2 shows the

process to scan through and read button status, one row at a time.

Digital Pin &5

| ESiEEE

Digital Pin #4425
E OO msbemzT
f \

R kEERE

Figure-2. Scan and read button status on a 4x4 matrix keyboard

To scan through each row and read button status, as indicate in
Figure-2, 4 digital input pins from the 86Duino EduCake are connected
to the matrix keyboard to read the data with another 4 digital output
pin connected to the keyboard to control the active row (or column) to
be scanned and read button status. Depending on the circuitry,

orientation for the matrix keyboard and the associated application

86DuUIND

codes, you can scan through each row or each Column to read button
status. For the exercise in this application note, we will use a 4x4
matrix keyboard, as shown in figure-3.

0 70~3 3

BiaEn
Bann

)]
)[])[0]

HHES - IKFEH
[510 - BU1 - &2 - B3 - 130 - 171 - 132 - 133]

Figure-3. 4X4 matrix keyboard pin definition
For this matrix keyboard module, when a button is pressed, the
corresponding pins for the row and column linked to the button are
shorted. The wiring connections for the matrix key board is linked to
the attached connector, as shown in figure-3, from left to right are as
follow:

[Row-0, row-1, row-2, row3, column-0, column-1, column-2,
column-3]
If you are using a different type of module, you need to check and
identify how the pins are connected to the buttons.
The 86Duino EduCake has more than 20 usable I/O pins, where AD pin
can be used as input to read pin status, suitable for I/O application
that does not require high number of I/O pins. For application
scenario that requires large number of keys, it'" s best to utilize IC chip

designed to provide keyboard function.

86DuUIND

2. First exercise: Keyboard scanning principle

In this section, we will work through an exercise using an EduCake and
the 4x4 matrix keyboard mentioned in the previous section, to show

how to scan through and read button status.

Attach the matrix keyboard to the EduCake as shown in the following

figure:
10000
20000
30000
o 40000
RX0 00 50000
™1 00 60000
20 70000
o~ LN @0 80000
+~@0 90000
S@010000
@0 110000
i ™~ T@0120000
@0130000
~-@0 140000
~10 00150000
~11 00160000

1200170000
~13 00180000
GND OO0 190000
SDA OO 200000
SCLOO 210000

EA042 00220000
EB043 OO0 230000

efgh
oooo1
0000 2
00003
0000 4
0000 5 0 0OGND
0000 6 O 0OADS
OO0O0O 7 O0OAD4
O0OO0O0 8 OOAD3
OO0OO0O0 9 O0OAD2
O000100 OAD1

OO0O00120 OGND

OO0OO00130 O +5v

OO000140 O +3.3v
OO0O0O0150 O RESET
0000160 0 14TX3
OO0O00170 O 15RX3
0000180 O 16TX2
0000190 O17RX2
0000200 O18EA1
0000210 O19EB1
0000220 O20Ez1
0000230 032~

EZ044 00240000 0000240 O 31~

250000 000025
260000 000028
270000 000027
280000 000028
abcd efgh

Connection from the matrix keyboard for row 0~3 and column 0~3 are
connected to Pin 9~2 on the EduCake. Launch 86Duino Coding IDE

and enter the following codes:

// Number of rows 1n the matrix
// Number of columns 1in the matrix

const int Rows = 4;
const int Cols = 4;

// Map corresponding button to the matrix
char keys[Rows] [Cols] =

{
{111’121,13I,IAI},
{141’151,I6I,IBI},
{'7','8','9','C'},
{I*IIIOI,I#I,IDI}

i

// Previous button status

bool keys status last[Rows] [Cols] =

{
{false, false, false, false},
{false, false, false, false},
{false, false, false, false},
{false, false, false, false}

i

86DuUIND

www.86duino.com

// Associate pins from EduCake to the matrix keyboard
// Row 0~3 on the keyboard

int row pins[Rows] = {9, 8, 7, 6};
// Column 0~3 on the keyboard
int col pins[Cols] = {5, 4, 3, 2};

void setup()

{

// Configure I/0 mode for the pin attached to the keyboard
// Read the voltage stage for the pins on the column
for(int col = 0; col < Cols; col++)
{

pinMode (col pins[col], INPUT PULLUP);
}

// Use the pins associate with row as voltage source
for(int row = 0; row < Rows; row++) // Scan row
{
pinMode (row pins[row], OUTPUT);
digitalWrite(row pins[row], HIGH);
}

Serial.begin(115200);

void loop()
{
for(int row = 0; row < Rows; row++) // Scan column
{
// Voltage for this column goes LOW
digitalWrite(row pins[row], LOW);
for(int col = 0; col < Cols; col++) // Scan column
{
// Read voltage level from column
// It’s Low when the button is pressed.
boolean result = !digitalRead(col pins[col]);

// Button press 1is detected.
// If previous button status is pressed, voltage
unchanged.
1f(result == HIGH && keys status last[row] [col] ==
true)
{
Serial.print ("Button ");
Serial.print (keys|[row] [col]);
Serial.println (" hold");
}

86DuUIND

www.86duino.com

// Previous button status is not pressed.
// Indicates a new button press event is detected.
else 1f (result == HIGH && keys status last[row] [col] ==
false)
{

Serial.print ("Button ");

Serial.print (keys|[row] [col]);

Serial.println (" pressed");

}

// Current scan: Button press is not detected
// Button previous status is pressed
// Indicate the button just been released
else if (result == LOW && keys status last[row] [col]
== true)
{
Serial.print ("Button ");
Serial.print (keys|[row] [col]) ;
Serial.println (" releaseed");
}
keys status last[row] [col] = result; // Change
button status

}

// Switch row voltage to high
digitalWrite(row pins[row], HIGH); }

delay(20);
}

After the above sketch (code) is deployed to the EduCake, launch the
serial monitor and press some buttons on the matrix keyboard to see
the associated output to the serial monitor, as shown in the following

figure:

Button * pressed
Button * hold
Button * hold
Button * hold
Button * hold
Button * hold
Button * hold
Button * hold
Button * hold
Button * hold
Button * releaseed
Button C pressed
Button C hold
Button C hold
Button C hold
Button C hold -

[¥] Avtoscroll [No line ending v | (115200 bavd & |

86DuUIND

In the beginning, there are code entries to configure and set the size
of columns and rows for the matrix keyboard and associate the “char
keys ()* with the button layout on the keyboard, initialize the

"keys_status_last()” array which is used to cache the previous button
status and initialize the “row_pins()” and “col_pins()” arrays to link
the pins from the matrix keypad to the I/O pins on the 86Duino
EduCake.

Inthe “setupl()

n

function, the I/O pins associated with the
“col_pins()" array are configured as input with internal pullup

resistor, and the I/O pins associated with the “row_pins()” array are

configured as output. The last line of code configure the Baud Rate

for the serial port.

Please note the I/O pins associated with the col_pins() array are
configured as INPUT_PULLUP mode, and the pins associated with the
row_pins() array are configured as OUTPUT and initialized to HIGH.
Each of the pins associated with the row_pins() array is pull low to scan
and detect button status. When a button is pressed, a voltage LOW
condition is created, as shown in the following figure:

Digital Pin

J

HIGH 0—\WA
oy 212 7
A4

L A7

YA A e

In the main program loop, there are two nested For loops. The first
For loop is used to scan the rows. The second For loop, nested within
the first For loop, is used to scan the columns, to read voltage status
associate with each of the button.

86DuUIND

In the first For loop, as the code scan through each of the rows, the
following line of code set voltage LOW condition to the row being
scanned:

digitalWrite(row_pins[row], LOW);
When the button is not pressed, the column which the button is
attached to is in voltage HIGH condition. When a button is pressed, it

bridges the column which the button is attached to the row currently

scan and cause voltage LOW condition to the column.

In the second For loop, it loops through the following line of code to
detect button press status for the button attached to each of the
column:

Boolean result = !digitalRead(col_pins[col]);

Then, the following line of code compare the current button status

with the previously scanned status to detect the following condition:

e Pressand hold: When the current status indicates the button
is pressed and the previously scanned status is also pressed, it
indicates the button has been pressed continuously.

e New button pressed event: When the current status indicates
the button is pressed and the previously scanned status is not

pressed, it indicates a new button press event.

e Button released event: When the current status indicates the
button is not pressed and the previously scanned status is

pressed, it indicates the button was pressed and just released.

While it" s simple, the above button status scanning technique are
useful in different type of application, to enter information needed by
the program, to control program execution, such as code that control
a motor. When press and hold the button, keep the motor running.

When button is released, stop the motor.

86DuUIND

3. Second exercise: Using the Keypad library

In this exercise, we will talk about the keypad library, using the same

circuitry from the previous exercise.

When a button on the matrix keypad is pressed, it does not generation
a clean one time transition from voltage High from voltage Low.
Instead, a series of Debounce signal is generated. Depending on the
mechanical design and build quality for the matrix keypad, instead of a
single transition event from voltage high to voltage low when the
button is pressed, multiple transition events between voltage high and
voltage low will take place within a very short period of time before
settling the line signal stabilize at voltage low condition. Debounce
or De-bouncing is an expected condition, when working with
mechanical push button. Debounce makes it appear the button has
been pressed, released and pressed multiple times, rapidly within a
small fraction of second between each event, which can be in the 10ms
range or faster. It s humanly not possible for us to repeatedly press
the button at such rapidly rate.

The Keypad library, used for this exercise, includes codes to handle
Debounce condition and help simply the code we write to read and
detect button press event. The Keypad library is available for
download from the following URL:
http://playground.arduino.cc/uploads/Code/keypad.zip
To use the keypad library, unzip the downloaded file and copy the
complete “\Keypad” folder (including sub-folders and content) to
the “\<86Duino_Coding_xxx>\Libraries” folder, where
"“\<86Duino_Coding_xxx>\" is the directory where you installed the
86Duino development IDE.
Use a text or source code editor to edit the “Keypad.h” header file,
inthe “\Keypad” folder, find the [#include "“WProgram.h”]entry
and change it to [#include <Arduino.h>]. Next, repeat the same task
onthe “Key.h” header file, locate inthe "\Keypad\utility” folder.
Launch 86Duino Coding IDE and enter the following code:

-10-

86DuUIND

www.86duino.com

#include <Keypad.h>

const byte Rows = 4; // number of rows in the matrix
const byte Cols = 4; // number of column in the matrix
// Associate keypad buttons to the matrix
char keys[Rows] [Cols] =
{
{'1','2','3','A'},
{'4','5','6','B'},
{'7','8','9','C'},
{'*','O','#','D'}
i
// Associate EduCake I/O pins to the matrix
byte row pins[Rows] = {9, 8, 7, 6}; // 5 0~3

byte col pins[Cols] = {5, 4, 3, 2}; // 17 0~3

// Keypad lib object

Keypad keypad4X4 = Keypad(makeKeymap (keys), row pins,
col pins, Rows, Cols);

void setup() {

Serial.begin(115200) ;

}
void loop () {

if(keypad4X4.getKeys())
{
// Check each of the button within the 4x4 keypad object
for(int 1 = 0; 1 < LIST MAX; i++)
{
// If button status changed, output to serial monitor
if(keypad4X4.key[i].stateChanged)
{
Serial.print ("Button ");
// output character symbol for the pressed button
// to serial monitor
Serial.print (keypad4X4.key[i].kchar);
switch(keypadd4X4.key[i].kstate)
{
case PRESSED:
Serial.println (" pressed."”);
break;
case HOLD:
Serial.println (" hold.™);
break;
case RELEASED:
Serial.println (" released.");
break;
case IDLE:

-11-

86DuUIND

Serial.println (" idle.™);
}
}
} // end for
} // end if (keypad4X4.getKeys())

delay(20);

}

Compile and upload the above sketch to the EduCake and launch the

serial monitor.

As you press a button on the keypad, you can see corresponding
output from the serial monitor match the pressed key, similar to the

example in the first exercise.

However, in addition to the matrix size declaration, associating button
symbol to the matrix array and I/O pins from the EduCake to the
matrix keypad that are similar to the code in the first exercise, the
[#include <Keypad.h>] statement is added along with the following
line of code that create the Keypad class object to take advantage of
the function provided by the Keypad library, enabling us to simplify
the code needed to work with matrix keypad:

[Keypad keypad4x4 = Keypad(makeKeymap(keys), row_pins, col_pins,
Rows, Cols);]

The only code needed in the setup() section is to initialize the serial
port.

In the main program loop, after using the “ keypad4x4.getKeys() “
function to read button status from the keypad object, the codes
within the following For loop iterate through the keypad object to read
the status for each of the button and output to the serial monitor:

For(inti = 0;i < LIST_MAX; i++)
Within the above For loop, the Keypad library provide the following
functions that help simplify the code:
- The "keypad4x4.keyl[i].stateChanged " function is used to detect

when the status of the button has changed.

-12-

86DuUIND

The " keypad4x4.key[il.kchar” function is used to identify which
button on the keypad is currently being processed.

The " keypad4x4.keylil.kstate " function is used to read the
button status.

In addition to detect which button on the keypad is pressed, the code
in this exercise also identify the following conditions:

e The button is pressed.

e The button is pressed and hold (the button was pressed
during the previous scan cycle).

e The button is released (the button was pressed during the
previous scan cycle).

e Idle (Button is not pressed).

Without the help from the Keypad library, it requires much more

lengthy and complicated codes to accomplish the same result.

-13-

86DuINO

4. Third exercise: Keypad Library & 8x8 LED Matrix
For the exercise in this section, the MAX7219+8x8 LED matrix is used

to demonstrate a more complex application scenario, as shown in the

following figure:

abcd efgh
10000 oooo1
20000 0000 2
30000 00003
40000 0000 4
RX0 00 50000 0000 5 00GND
X1 00 60000 0000 6 OOAD5
00 70000 0000 7 O OAD4
U0 80000 0000 8 OOAD3 B
00 90000 0000 9 O0AD2
00100000 0000100 OAD1 —
0010000 0000110 OAD0 -
= 00120000 0000 O GND —
00130000 000 O +5V -
00140000 0o 140 O +3.3V
o 0150 O RESET

0160 O 14TX3
017 0 O 15RX3
0180 O 16 TX2

EB043 0023000
EZ044 O0 240000

250000
260000
\\\ 270000

280000
abcd

(

In an earlier application note, we' ve talked about matrix LED, using
the MAX7219+8x8 module. Since working with matrix LED is fairly

common for Arduino and 86Duino developer, it" s good to compose

L
[l
o "
X oa
~ N
x u
< n
-
[l
[l

a library that encapsulate common function to help simplify
application development.
Let" s work through the following steps to create the LEDmat8 library
to support the MAX7219+8x8 matrix LED module:
1. Create a new folder and name the folder “LEDmat8" under
the following directory:
\86Duino_Coding_xxx_Win\Libraries
Note: "\86Duino_Coding_xxx_Win" is the directory where
you installed the 86Duino development tool, 86Duino Coding
IDE, where “xxx” is the installed version.

-14-

86DuUIND

2. Inthe newly created "\LEDmat8" folder, create a new file,
“LEDmat8.h"

following listing into this file:

name the file as and enter the code from the

#ifndef LEDMAT8 H
#define LEDMAT8 H

3.

#if defined (ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
ftelse
//#include "WProgram.h"
#include <Arduino.h>
fendif

// MAX7219 register
#define max7219 REG noop 0x00
#define max7219 REG digitO 0x01
#define max7219 REG digitl 0x02
#define max7219 REG digit2 0x03
#define max7219 REG digit3 0x04
#define max7219 REG digit4 0x05
#define max7219 REG digit5 0x06
#define max7219 REG digité 0x07
#define max7219 REG digit7 0x08
#define max7219 REG decodeMode 0x09
#define max7219 REG intensity 0x0a
#define max7219 REG scanLimit 0x0b
#define max7219 REG shutdown 0x0c

#define

max/7219 REG displayTest 0xO0f

class LEDmat8({
public:
LEDmat8 (int DIN,
void Init();
void DrawLED(byte *LED matrix);
//~LEDmat8 ();
void SPI SendByte (byte data);
void MAX7219 1Unit(byte reg addr, byte reg data);

int LOAD, int CLOCK);

private:
int DIN pin;
int LOAD pin;
int CLOCK pin;
}:

Inthe “\LEDmat8” folder, create a new file, name the file as
“LEDmat8.cpp” and enter the code from the following listing
into this file:

-15-

86DuUIND

www.86duino.com

#include <LEDmat8.h>

LEDmat8::LEDmat8 (int DIN, int LOAD, int CLOCK)
{

DIN pin = DIN;

LOAD pin = LOAD;

CLOCK pin = CLOCK;
}

void LEDmat8::Init ()

{
pinMode (DIN pin, OUTPUT) ;
pinMode (CLOCK pin, OUTPUT) ;
pinMode (LOAD pin, OUTPUT) ;

digitalWrite(CLOCK pin, HIGH);

// Initialize MAX7219 register

MAX7219 1Unit(max7219 REG scanLimit, 0x07);
MAX7219 1Unit (max7219 REG decodeMode, 0x00);
MAX7219 1Unit (max7219 REG shutdown, 0x01);
MAX7219 1Unit (max7219 REG displayTest, 0x00);

e

for(int i = 1; i <= 8; i++) { // Turn off all LED
MAX7219 1Unit(i, 0);

}

// Set brightness range, 0x00 ~ 0x0f

MAX7219 1Unit(max7219 REG intensity, 0xO0f);

}

// Draw the whole LED display

void LEDmat8::DrawLED(byte *LED matrix)
byte i = 8;
byte mask;

while(1 > 0)
{

mask = (0x01 << (1 - 1)); // Bitmask, starting from
left

digitalWrite(CLOCK pin, LOW); //

if (data & mask) { // Use Bitmask to determine

corresponding bit
digitalWrite(DIN pin, HIGH); // If it’s 1,DIN
output HIGH
}
else(
digitalWrite (DIN pin, LOW); // If it’s 0, DIN output
LOW

-16-

86DuUIND

www.86duino.com

}
digitalWrite(CLOCK pin, HIGH); //
i=1-1; // move to next bit

}

// Control a MAX7219 module
void LEDmat8::MAX7219 1Unit (byte reg addr, byte
reg data)
{
// Before sending data, set LOAD pin to LOW
digitalWrite(LOAD pin, LOW);

SPI SendByte(reg addr); // Send register address
SPI SendByte(reg data); // send data

// After data is sent, set LOAD pin to HIGH
digitalWrite (LOAD pin, HIGH);
}

Launch 86Duino Coding IDE and enter the following code:

#include <LEDmat8.h>
#include <Keypad.h>

const byte Rows = 4; // number of rows
const byte Cols 4; // number of columns
// Corresponding symbols mapped to the keypad
char keys[Rows] [Cols] =
{

{'1'/'2'/'3'/'A'}/

{'4','s5"','e','B'},

{'7'/'8'/'9'/'C'}/

{'*'/'O'/'#'/'D'}
}:
// Associate EduCake I/O Pin# to the matrix
byte row pins[Rows] = {9, 8, 7, 6}; // Row 0~3
byte col pins([Cols] = {5, 4, 3, 2}; // Column 0~3

// Keypad library object
Keypad keypad4X4 = Keypad(makeKeymap (keys), row pins,
col pins, Rows, Cols);

// LED module control pins

int DIN pin = 10;

int LOAD pin = 11;

int CLOCK pin = 12;

b

// Associate EduCake I/0 Pin# to the matrix

-17-

86DuUIND

www.86duino.com

byte row pins[Rows] = {9, 8, 7, 6}; // Row 0~3
byte col pins([Cols] = {5, 4, 3, 2}; // Column 0~3

// Keypad library object
col pins, Rows, Cols);

// LED module control pins
int DIN pin = 10;

int LOAD pin = 11;

int CLOCK pin = 12;

// 8X8 LED matrix object

CLOCK pin);

B0O0O0000O0OO,
B0O00000O0OO,
B0O0O0000OO0OO,
B0O00000O0OO,
B0O00000OOO,
BO0O000O0O0OO,
B0O00000OO0OO,
B0O00000O0OO

y;

void ClearLED Data() // Clear LED display data
{
for(int 1 = 0; 1 < 8; i++)
{
LED Data 8X8[i] = B00000000;
}
}

void setup () {
LedMatrix.Init (),
delay (1000);

void loop () |
ClearLED Data();

// check keypad status
keypaddX4.getKeys ()

// Check each of the item in the keypad4X4 array
for(int 1 = 0; 1 < LIST MAX; i++)
.

Keypad keypad4X4 = Keypad(makeKeymap (keys), row pins,

LEDmat8 LedMatrix = LEDmat8 (DIN pin, LOAD pin,

byte LED Data 8X8[8] = { // data matrix for LED display

-18-

86DuUIND

www.86duino.com

// Check whether the button is pressed
if (keypad4X4.key[i].kstate == PRESSED)// HOLD
{

// Update display corresponding to the key pressed
// “D” correspond to top-left corner
// “1” correspond to lower-right corner

break;

switch (keypad4X4.key[i] .kchar)
{

case '"l': // LED r3 c3
LED Data 8x8[7] |= B11000000;
LED Data 8x8[6] |= B11000000;
break;

case '"2': // LED r3 c2
LED Data 8X8[5] |= B11000000;
LED Data 8x8[4] |= B11000000;
break;

case '"3': // LED r3 cl
LED Data 8x8[3] |= B11000000;
LED Data 8x8[2] |= B11000000;
break;

case 'A': // LED r3 cO
LED Data 8x8[1] |= B11000000;
LED Data 8x8[0] |= B11000000;
break;

case '"4': // LED r2 c3
LED Data 8x8[7] |= B00110000;
LED Data 8X8[6] |= B00110000;

break;

case '5': // LED r2 c2
LED Data 8X8[5] |= B00110000;
LED Data 8xX8[4] |= B00110000;
break;

case '6':// LED r2 cl
LED Data 8X8[3] |= B00110000;
LED Data 8xX8[2] |= B00110000;
break;

case 'B': // LED r2 cO

LED Data 8X8[1] |= B00110000;
LED Data 8X8[0] |= B00110000;

-19-

86DuUIND

www.86duino.com

case '7': // LED rl c3

LED Data 8X8[7] |= B00001100;
LED Data 8X8[6] |= B00001100;
break;

case '8': // LED rl c2

LED Data 8X8[5] |= B00001100;
LED Data 8X8[4] |= B00001100;
break;

case '9': // LED rl cl

LED Data 8X8[3] |= B00001100;
LED Data 8X8[2] |= B00001100;
break;

case 'C': // LED rl cO

LED Data 8X8[1] |= B00001100;
LED Data 8X8[0] |= B00001100;
break;

case '"*': // LED r0 c3

LED Data 8X8[7] |= B00000011;
LED Data 8X8[6] |= B00000011;
break;

case '0': // LED r0 c2

LED Data 8X8[5] |= B00000011;
LED Data 8X8[4] |= B00000011;
break;

case '"#': // LED r0 cl

LED Data 8X8[3] |= B00000011;
LED Data 8X8[2] |= B00000011;
break;

case 'D': // LED r0 cO

LED Data 8X8[1] |= B00000011;
LED Data 8X8[0] |= B00000011;
break;

default:
break;

}

}
} // end for

// Draw LED display
LedMatrix.DrawLED(LED Data 8X8);
delay(50);

-20-

86DuUIND

After the above code is compiled and uploaded, you can press a
button on the keypad to turn on the corresponding LED.

The above example uses the Keypad library and 8x8 LED application
code from a previous application note, encapsulate the code from the
8x8 LED application into the LEDmat8 library.

The variable declaration in the beginning section is the same as in the

2" exercise with the following variables for the LED matrix added:
o LED_Data_8x8[8] byte array to hold LED display data.

e ClearLED_Data() function to clear data in the LED_Data_8x8|[]
byte array.

e LedMatrix variable that represent the LED matrix object.

Wihin the setup() function, the LedMatrix.Init() function is called to
initialize the LED matrix, looping through the LED matrix and call the
ClearLED_Data() function to clear data. The keypad4x4.getKeys()
function is called to retrieve update keypad button status. Then, the
keypad4x4.key[i].kstate function inside a For loop to read button
status for each of the button, follow by a series of switch statements to
set the corresponding display status to the LED_Data_8x8[] array. The
LedMatrix.DrawLED() function is call last within the Setup() function to
draw the LED display (turning on LED corresponding to the button
pressed).

The LED display corresponding to the button in the above example is
based on the orientation of the matrix keypad and LED matrix, as

shown in the figure below:

-21-

86DuUIND

0,0

[a)(#] (2] (]
(2) (gl 2

()] (=]
v)(=) (=) (=]

(3,3) LED_Data_8X8[7]

If the LED display on the LED matrix display does not correspond to
the button press on the keypad, you need to change the orientation of
the keypad, LED matrix or modify the code to get the expected result.
You can experiment and change the button press condition in the

following statement to see different result on the LED matrix:
- If (keypad4x4.key[i].kstate == PRESSED)

-22-

86DuUIND

5. Fourth exercise: Whac-A-Mole Game using Matrix Keypad & 8x8
LED Modules
In this last exercise, we will create a whac-a-mole game using the same
circuitry with matrix keypad and 8x8 LED modules.
Launch 86Duino Coding IDE and enter the code from the following
listing:

#include <LEDmat8.h>
#include <Keypad.h>

const byte Rows = 4; // declare number of rows for the matrix
const byte Cols = 4; // declare number of columns for the matrix
// Associate keypad symbols to the keys[] array

char keys[Rows] [Cols] =

{

{'1',V2|,|3','A'},
{'4',V5|,|6','B'},
{'7',V8|,|9','C'},
{'*',VO‘,‘#','D'}

}i

// Associate EduCake I/O pins to the keypad

byte row pins[Rows] = {9, 8, 7, 6}; // rows 0~3
byte col pins[Cols] = {5, 4, 3, 2}; // columns 0~3

// Keypad lib object
Keypad keypad4X4 = Keypad(makeKeymap (keys), row pins, col pins,
Rows, Cols);

// Define LED module control pins
int DIN pin = 10;

int LOAD pin = 11;

int CLOCK pin = 12;

// 8X8 LED matrix object
LEDmat8 LedMatrix = LEDmat8(DIN pin, LOAD pin, CLOCK pin);

// variables for the game
int score = 0;

long gameTime = 0;
boolean runGame =
int loopCount = 0;

false; // Variable to indicate active game

#define DELAY TIME 50 // time delay between loop
#define LOOPCOUNT MAX 30 //
#define GAME TIME 30 //

#define MOLE NUM MAX 6 // max number of mole at same time

-23-

86DuUIND

www.86duino.com

byte LED Data 8X8[8]
B0O00000O0OO,
B0O00000O0O,
B0O00000O0O,
B0O00000O0O,
B0O00000O0OO,
B0O00000O0O,
B0O00000O0OO,
B00000000 // Left -

b

{0,0,0,0},
{0,0,0,0},
{0,0,0,0},
{0,0,0,0}
b

// keypad array
boolean Key Datal[4] [4
{0,0,0,0},
{0,0,0,0},
{0,0,0,0},
{0,0,0,0}
}i

void ClearLED Data()
{

for (

{

int 1 = 0; 1 <

LED Data 8X8[1i]
}
}

void ClearMoleData()

}
}
}

void ClearKeyData ()

for(int 1 = 0; 1 <
for(int j = 0; j
Key Datal[i]l[]] =

}
}
}

// Left -> Right

// mole location array,
boolean Mole Datafl4] [4]

[column]

{ // LED matrix display data
row 1

> Right row 8

[column] [row]

{

[row]

{

]

// Clear LED display

8; 1++)

B0O000000O;

{ // Clear mole array data

for(int 1 = 0; 1 < 4; i++) {
for(int J = 0; 7 < 4; j++) {
Mole Datal[i] [j] = false;

{ // Clear keypad array data
4; i++) |

< 4; g+t) |

false;

-24-

86DuUIND

www.86duino.com

void GameStart ()
ClearMoleData ();

{ // Start game

// initialize mole display
ClearKeyData(); // initialize keypad data
runGame true; // set game to active mode
score // Initialize game score

gameTime millis(); // initialize game time.

}

= 0;

void GameEnd () {// Stop game,

// monitor

Serial.println("---—-—=--=""""="="="—"—"="—"—"—"—"———————————
Serial.println ("Game end!") ;
Serial.print (" Total Score
Serial.println (" = Press S

or 'R'

Serial.println("-----——————-—--"—--"-""-""-"-"-"-""-""—"—""—"———

’

// display that indicate end of the game

LED Data 8X8[0] = B01111110;
LED Data 8X8[1] = B10000001;
LED Data 8x8[2] = B10010101;
LED Data 8xX8[3] = B10100001;
LED Data 8xX8[4] = B10100001;
LED Data 8xX8[5] = B10010101;
LED Data 8x8[6] = B10000001;
LED Data 8x8[7] = B01111110;
runGame = false;

}

void setup () {

LedMatrix.Init ();

randomSeed (analogRead (0));// Initialize random

output game score to serial

");Serial.println(score);
to play again.");

number generator

Serial.begin(115200);

delay(4000);
Serial.println("---—-===--="="===———""="—=————~———(——— - ————— ")
Serial.print (" You Have ");

Serial.print (GAME TIME) ;

Serial.println (" Seconds To Play Each Game.");

Serial.println (" - Press 'S' To Start Game.");

Serial.println (" - Press 'R' To Reset Game.");

Serial.println (" - Press 'E' To End Game.");
Serial.println("------——-=-=--—--——-—————————— - ——————— ")

-25-

86DuUIND

www.86duino.com

void loop () {
loopCount++;
if (loopCount>LOOPCOUNT MAX) {
loopCount = 0;

// ¥®&E coM PORT BARILE
if(Serial.available()){
char ch = Serial.read();

// Start the game when the S key is pressed

if(ch == 's' || ch == 'S"'") {
Serial.println (M———————=———m
Serial.println ("Game is started!");
Serial.println (M————————————
GameStart ();

}

// When R is pressed, restart the game

else if(ch == 'r' || ch == 'R') {
Serial.println ("————————————
Serial.println("Game is reset!");
Serial.println (M——————————
GameStart ();

}

// When E is pressed, end the game
else 1if(ch == 'e' || ch == '"E') {
GameEnd (),
}

-26-

86DuUIND

www.86duino.com

// Check elapsed game time
if (runGame) {
long time = millis() - gameTime; // elapsed game time

// Check whether max game time elapsed
if(time < GAME_TIME*IOOO) A
// Randomly generate position for mole to appear
// Refresh mole data after reaching max loopCount
if (loopCount == LOOPCOUNT MAX) {
ClearMoleData()
// randomly generate the number of mole to appear
long mole num = random(0, MOLE NUM MAX+1);

for(int i = 0; 1 < mole num; i++) |
// random number between 0 to 4
long i num = random (0, 4);

// random number between 0 to 4
long j num = random (0, 4);
// Serial.print (i num);
// Serial.print(",");

// Serial.println(j num);
Mole Data[i num] [J num] = true;

}

// Read button status from keypad
// Compare keypad status with mole location array
// and adjust game score

ClearLED Data(); // Clear LED data before update
ClearKeyData(); // Clear key data before update
keypad4X4.getKeys(); // update keypad status

// check each button in the keypad4X4 array
for(int i = 0; i < LIST MAX; i++)
{

// Check whether button is pressed

if(keypad4X4.key[i] .kstate == PRESSED)

{

// update array data based on key pressed
// button “D” is at upper-Left corner

// button “1” is at lower-right corner
switch(keypad4X4.key([i].kchar)

{
case '1l':// LED r3 c3

Key Data[3][3] = true;

break;

case '2':// LED r3 c2
Key Data[3][2] = true;

break;

case '3':// LED r3 cl
Key Data[3][1] = true;

break;

-27-

86DuUIND

www.86duino.com

case 'A':// LED r3
Key Data[3][0] =

break;

case '4':// LED r2
Key Data[2][3] =

break;

case '5':// LED r2
Key Data[2][2] =

break;

case '6':// LED r2
Key Data[2][1] =

break;

case 'B':// LED r2
Key Data[2][0] =

break;

case '7':// LED rl
Key Data[l][3] =

break;

case '8':// LED rl
Key Data[l][2] =

break;

case '9':// LED rl
Key_Data[l][l] =
break;

case 'C':// LED rl
Key Data[l][0] =
break;

case '*':// LED rO
Key Data[0][3] =
break;

case '0':// LED rO
Key Data[0][2] =
break;

cO

true;

c3

true;

c2

true;

cl

true;

c0

true;

c3

true;

c2

true;

cl
true;

/0
true;

c3
true;

c2
true;

-28-

86DuUIND

www.86duino.com

case "#':// LED r0O cl
Key Data[0][1] = true;
break;

case 'D':// LED r0 cO
Key Data[0][0] = true;
break;

default:
break;
}

}
}// end for

// Compare data between keypad and mole array
for(int i = 0; 1 < 4; i++) { // Row
for(int j = 0; j < 4; j++) { // Column
// When button pressed and mole appeared location match
// Clear location data in the mole array
// and increase game score by 1

if(Mole Data[i] [J] == true && Key Datali] [J] == true) {
Mole Datal[i] [j]= false;
score++;
Serial.print (" >> scored! score §") ;

Serial.println (score) ;
}

}

// Use mole array as display data for the LED matrix
// to show location where the mole has been whac

for(int i = 0; i < 4; i++) { // %l
for(int § = 0; J < 4; J++) { // 17
if(Mole Datal[i][]j] == true) {

byte data = B00000011;
data = data << (i*2);

LED Data 8X8[j*2] [|= data;
LED Data 8X8[j*2+1] |= data;
}// end if

}

}
// Draw display to LED matrix

LedMatrix.DrawLED(LED Data 8X8);
}
else{ // Game time is up, end game
GameEnd () ;
// Draw display to LED matrix
LedMatrix.DrawLED(LED Data 8X8);

}
}

delay(DELAY TIME);

-29-

86DuUIND

Compile and upload the sketch to EduCake. Then, launch the serial
monitor. As the code execute, the serial monitor display information
showing how to start, reset and end the game. Each game session
goes on for 30 seconds. When you start the game, the serial monitor
display score for the game as you play, as shown in the following
figure:

You Have 30 Seconds To Play Each Game.
- Press 'S’ To Start Game.
- Press 'R’ To Reset Game.
- Press 'E' To End Game.

>> scored! score :
>> scored! score :
>> scored! score :
>> scored! score :
>> scored! score :5
>> scored! score :
>> scored! score :
>> scored! score :
>> scored! score :
>> scored!

Total Score : 10
- Press 'S’ or 'R' to play again.

[¥] Autoscroll \No line ending | 115200 bavd « |

The code for this exercise includes variables such as " score ; to keep
track of game score," gameTime jto keep track of elapsed game time,
"runGame J to indicate whether a game is active and " loopCount ; to
keep track of number of game loop and update data accordingly. In
addition to these variables, the following #define statements were

used to define game parameters:
o #define DELAY_TIME (To define the delay time between loop)
e #define LOOPCOUNT_MAX (To define the maximum loop before

refresh the game)

-30-

86DuUIND

o #define MOLE_NUM_MAX (To define max number of Mole that can

appear at the same time)

The' ClearMoleData() 1," ClearKeyData() 4," GameStart () .and"™ GameEnd
(). functions are used to control game flow.

Within the' setup () sfunction, to support the random variables needed for

the game, the "randomSeed(analogRead(0)); s statement is used to

initialize random variable generator.

The" analogRead(0) ; function, used

as the parameter for the randomSeed() function, is link to an I/O pin that

is not connected, to insure randomness.

Following is the flow chart for the game:

p
loop()

loopCount&XN1
MR#BBLOOPCOUNT_MAXRIERZ

1 &Serial Port
BHERE R

HRUFIS

FRta L —

AT, w s

MRWHE [y a

runGame 7% false

BB BB TINEE

runGame % true

RE W BETT R

22818 GAME_TIME*1000

v

MRloopCountZiEHAME - BIESERL
Eith B8 ith (B

v

AR BARAS - YRR ITHTAY IR B E

]

BRI E S M E - SRR T
Rt SRS EHIRAIE - BERRITE
DE+1

]

B HR BRIt E M E A S E
T AxARI B B RHEFTEI8X8 LED ZEfE
P&

BELEDEXR

-31-

86DuUIND

Following is the flow to check button pressed on the keypad to the
Mole matrix array:

Mole_Data[4][4]
I B it [

LED_Data_8X8[8]

FELEDEER
N {
ST ER 3 [E] ||_||_|
[| Bl
CCCE Bl
[414] o E
Key_Data
s —Y—REMitE = e HC
(0,0) [:] HEME - NRE EBRER 88
' £1 - BiRiEiE

B E BB =0
RRESHE+]

3.3

BRREST
SEHEUE

To randomly generate moles to appear on the Mole matrix array, we
first randomly generate N number of mole to appear. Then,
randomly assign these moles to the Mole matrix array.

Based on the flow in the previous figure, display on the LED matrix is
used to represent the location where the mole appear. To make the
game more interesting, you can further expand the game by adding
more complex components, such as servo to raise and lower the moles,
7 segment LEDs to display game progress, audio output when a mole
is whac and etc.

The game complexity can be changed by changing the value for
LOOPCOUNT_MAX (which affect how quickly the mole display data is
updated), MOLE_NUM_MAX (which control the max number of moles

-32-

86DuUIND

that can appear at the same time) and gameTime (which control
available time to play the game).

-33-

