86Duino

.O.T

1. 1.O.T Application

86Duino EduCake (EduCake) is an open-source microcomputer learning
platform built on Vortex86EX, a System-On-Chip (SoC) built with a 32-bit x86
processor. The EduCake is designed to be electronically compatible with Ar-
duino pin layouts by using an Arduino emulation software which enables ap-
plication codes written for Arduino (sketch) to be compiled and run on the Ed-
uCake without modification. In a nutshell, the EduCake is hardware and soft-
ware compatible to the Arduino platform. The EduCake is packaged in a com-
pact, yet functional metallic enclosure with an integrated solderless breadboard
that exposes the 1/0, designed to help hobbyists and students experiment with
different electronic circuitries, to learn microcomputer and embedded system,

without the need to solder.

Unlike other Arduino learning kits, the EduCake does not need an addi-
tional W5100 LAN expansion board to have the LAN access. The EduCake has
a build-in LAN module able to provide TCP/IP protocols (TCP, UDP, ICMP, IPv4
ARP, IGMP, PPPoE and Ethernet). Also, the EduCake will only need to use

Ethernet Libraryl to connect to internet.

(1) 86Duino EduCake

1 Please refer Arduino.cc (http://www.arduino.cc/en/reference/ethernet) for more information.

-1-

86Duino

As the picture (154) shown, the RJ45 connector provides LAN accessibil-
ity.
As the pictures (a) (b) show, we can use the ordinary Cat 5 cable to con-

nect to the EduCake and network switch.

(a). EduCake (b). Network Switch

The EduCake provides LAN that supports up to 10/100Mbps. With ESD
and induction coil designs, the Educake provides the proper ESD protection as

well.

86Duino

As the shown in the picture below, after booting up the EduCake, the
green light to the right will stay on and the orange light to the left will blink.

86Duino

2. The Simple Web Server Design

As seen in the pictures (a) (b) shown below, connect one end of Cat 5

cable to the Educake and the other end to the network switch.

(a). EduCake (b). Network Switch

As with the previous chapters, after installing the 86Duino EduCake de-
velopment software and opening the IDE, we can write a program (shown be-
low) to display the value of AnalogPort0O~Port5 from the Educake to the simple

webserver we have designed.

WebServer Test Program

#include <SPI.h>
#include <Ethernet.h>
/I Enter a MAC address and IP address for your controller below.
/I The IP address will be dependent on your local network:
byte mac|] ={
OxAA, 0xBB, OxCC, 0xDD, OxEE, OxFF
5
IPAddress ip(192, 168, 30, 200);
IPAddress dnServer(168, 95, 1, 1);
/I the router's gateway address: IPAddress gateway(192, 168, 30, 254);
/I the subnet: IPAddress subnet(255, 255, 255, 0);

/[Initialize the Ethernet server library

-4-

86Duino

www.86duino.com

/[with the IP address and port you want to use

Il (port 80 is default for HTTP):

EthernetServer server(80);

void setup() {
/I Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {

; I/ wait for serial port to connect. Needed for Leonardo only

/I start the Ethernet connection and the server:
Ethernet.begin(mac, ip);

server.begin();

Serial.print("Server is running at ip: ");

Serial.printin(Ethernet.locallP());

void loop() {
/I listen for incoming clients
EthernetClient client = server.available();
if (client) {
Serial.printin("New Client");
/[an http request ends with a blank line
boolean currentLinelsBlank = true;
while (client.connected()) {
if (client.available()) {
char ¢ = client.read();

Serial.write(c);

86Duino

www.86duino.com

/I if you've gotten to the end of the line (received a newline
/I character) and the line is blank, the http request has ended,
/l so you can send a reply
if (c =="\n" && currentLinelsBlank) {
/I send a standard http response header
client.printin("HTTP/1.1 200 OK");
client.printin("Content-Type: text/html");
client.printin("Connection: close");
client.printin("Refresh: 5");
client.printin();
client.printin("<!DOCTYPE HTML>");
client.printin("<html>");
// output the value of each analog input pin

for (int analogChannel = 0; analogChannel < 6; analog-
Channel++) { int sensorReading =
analogRead(analogChannel);

client.print("Analog Input *);
client.print(analogChannel);
client.print(" is ");
client.print(sensorReading);
client.printin("
");
}
client.printin("</html>");
break;
}
if (c=="\n"){
/l you're starting a new line
currentLinelsBlank = true;
}
elseif (c!="\r') {

/[you've gotten a character on the current line

-6-

86Duino

www.86duino.com

currentLinelsBlank = false;

}

/I give the web browser time to receive the data
delay(1);

/I close the connection:

client.stop();

Serial.printin("Client Disconnected");

86Duino

As shown in the pictures below, we can then see the test results from the
Webserver testing program.

(a). WebServer Testing Program Start

(b). Connet the Webserver

86Duino

www.86duino.com

86Duino

3.Use DHCP to Set up the Web Server

Using the previous setup with a Cat 5 Cable, the EduCake, and the Net-
work Switch, we will use DHCP to set up the web server.

(a). EduCake (b). Network Switch

As with the previous chapters, after installing the 86Duino EduCake de-
velopment software and opening the IDE, we can write a program shown below
to display the value of AnalogPortO~Port5 from the Educake to the simple
webserver we have just designed. Unlike the previous section, however, the IP
address is acquired through DHCP server.

WebServer (WebServer_Dhcp)

#include <SPI.h>
#include <Ethernet.h>
/I Enter a MAC address and IP address for your controller below.
/I The IP address will be dependent on your local network:
byte macl] ={
OxAA, OxBB, 0xCC, 0xDD, OxEE, OxFF
5
IPAddress ip(192, 168, 30, 200);
IPAddress dnServer(168, 95, 1, 1);
/I the router's gateway address:

IPAddress gateway(192, 168, 30, 254);

/I the subnet:

-10-

86Duino

www.86duino.com

IPAddress subnet(255, 255, 255, 0);

/I Initialize the Ethernet server library

/[with the IP address and port you want to use

Il (port 80 is default for HTTP):

EthernetServer server(80);

void setup() {
/I Open serial communications and wait for port to open:
Serial.begin(9600);

Serial.printin("Now Program Start") ;

while (!Serial) {

; I/ wait for serial port to connect. Needed for Leonardo only

if (Ethernet.begin(mac) == 0) {
Serial.printin("l can't get any IP address from DHCP Server"),
for(;;)

Serial.print("Default IP Address is : "),
Serial.printin(ip);

Ethernet.begin(mac, ip, dnServer, gateway, subnet);
Ethernet.begin(mac);
server.begin();
Serial.print("Server is running at ip:);
Serial.print(Ethernet.locallP());
Serial.print("from DHCP Server \n");}

-11-

86Duino

www.86duino.com

void loop() {
/I listen for incoming clients
EthernetClient client = server.available();
if (client) {
Serial.printin("New Client");
/[an http request ends with a blank line
boolean currentLinelsBlank = true;
while (client.connected()) {
if (client.available()) {
char ¢ = client.read();
Serial.write(c);
/I if you've gotten to the end of the line (received a newline
/I character) and the line is blank, the http request has ended,
/I 'so you can send a reply
if (c =="\n" && currentLinelsBlank) {
I/l send a standard http response header
client.printin("HTTP/1.1 200 OK");
client.printin("Content-Type: text/html");

client.printin("Connection: close"); // the connection will be closed after
completion of the response

client.printin("Refresh: 5"); // refresh the page automatically every
5 sec

client.printin();

client.printin("<!DOCTYPE HTML>");
client.printin("<html>");

// output the value of each analog input pin

for (int analogChannel = 0; analogChannel < 6; analog-
Channel++) {

int sensorReading = analogRead(analogChannel);

client.print("Analog Input ");

client.print(analogChannel);

-12 -

86Duino

www.86duino.com

client.print(" is ");
client.print(sensorReading);
client.printin("
");
}
client.printin("</html>");
break;
}
if (c =="n"){
/l you're starting a new line
currentLinelsBlank = true;
}
elseif (c!="\r') {
// you've gotten a character on the current line

currentLinelsBlank = false;

}

/I give the web browser time to receive the data
delay(1);

/Il close the connection:

client.stop();

Serial.printin("Client Disconnected");

Below are the testing results.

-13-

86Duino

(a). WebServer Testing Program Start

(b). Connet the Web Server

-14 -

86Duino

www.86duino.com

-15-

86Duino

4.Telnet Testing Program

We will continue using the same setup to test Telnet functionality.

(a). EduCake (b). Network Switch

Once connected, the program below can be used to turn the Educake into
a Telnet client platform.

Telnet Client Testing Program

#include <SPI.h>
#include <Ethernet.h>
/I Enter a MAC address and IP address for your controller below.
/I The IP address will be dependent on your local network:
byte mac|] ={
OxAA, 0xBB, 0xCC, 0xDD, OXEE, OxFF
5
/I MAC ADDRESS
IPAddress ip(192, 168, 30, 200);
IPAddress dnServer(168, 95, 1, 1);
/l the router's gateway address:
IPAddress gateway(192, 168, 30, 254);
/Il the subnet:
IPAddress subnet(255, 255, 255, 0);

-16 -

86Duino

www.86duino.com

/I Enter the IP address of the server you're connecting to:

IPAddress server(140, 112,172, 11);

/I Initialize the Ethernet client library

/[with the IP address and port of the server

// that you want to connect to (port 23 is default for telnet;

I if you're using Processing's ChatServer, use port 10002):

EthernetClient client;

void setup() {
/I start the Ethernet connection:
Ethernet.begin(mac, ip, dnServer, gateway, subnet);
/I Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {

; I/ wait for serial port to connect. Needed for Leonardo only

/I give the Ethernet shield a second to initialize:
delay(1000);

Serial.printin("connecting...");

/Il if you get a connection, report back via serial:
if (client.connect(server, 23)) {
Serial.printin("connected”);
}
else {
/'if you didn't get a connection to the server:

Serial.printIn("connection failed");

-17-

86Duino

www.86duino.com

}

void loop()
{
/I if there are incoming bytes available
/l from the server, read them and print them:
if (client.available()) {
char ¢ = client.read();

Serial.print(c);

/[as long as there are bytes in the serial queue,
/l read them and send them out the socket if it's open:
while (Serial.available() > 0) {

char inChar = Serial.read();

if (client.connected()) {

client.print(inChar);

/I if the server's disconnected, stop the client:
if ('client.connected()) {
Serial.printin();
Serial.printin("disconnecting.");
client.stop();
// do nothing:

while (true);

-18 -

86Duino

www.86duino.com

Below are the results of testing.

Q9
®

-19-

86Duino

5.Text Web Client Browser Testing Program

(a). EduCake (b). Network Switch

We will now use the same setup to turn the Educake into a text based web
browser client to search for information on the internet.

Text Web Client Browser (WebClient)

#include <SPI.h>

#include <Ethernet.h>

/[Enter a MAC address for your controller below.

/I Newer Ethernet shields have a MAC address printed on a sticker on
the shield

byte macl] ={

OxAA, 0xBB, 0xCC, 0xDD, OXEE, OXFF
5
IPAddress ip(192, 168, 30, 200);
IPAddress dnServer(168, 95, 1, 1);
/I the router's gateway address:
IPAddress gateway(192, 168, 30, 254);
Il the subnet:
IPAddress subnet(255, 255, 255, 0);

-20-

86Duino

www.86duino.com

/'if you don't want to use DNS (and reduce your sketch size)
/I use the numeric IP instead of the name for the server:

/lIPAddress server(74,125,232,128); // numeric IP for Google (no
DNS) /lwww.google.com

char server[] = "www.google.com"; /[name address for Google
(using DNS)

/I Initialize the Ethernet client library
/[with the IP address and port of the server
/l that you want to connect to (port 80 is default for HTTP):

EthernetClient client;

void setup() {
/I Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {

; I/ wait for serial port to connect. Needed for Leonardo only

/I start the Ethernet connection:
if (Ethernet.begin(mac) == 0) {
Serial.printin("Failed to configure Ethernet using DHCP");

/I no point in carrying on, so do nothing forevermore:
/I try to congifure using IP address instead of DHCP:
Ethernet.begin(mac, ip, dnServer, gateway, subnet);
}
/I give the Ethernet shield a second to initialize:
delay(1000);

Serial.printin("connecting...");

-21-

86Duino

www.86duino.com

{

Il if you get a connection, report back via serial:

if (client.connect(server, 80)) {
Serial.printin("connected”);
/l Make a HTTP request:

client.printin("GET /search?qg=arduino HTTP/1.1");
client.printin("Host: www.google.com");
client.printin("*Connection: close");
client.printin();

}

else {
/'if you didn't get a connection to the server:

Serial.printin("connection failed");

void loop()

// if there are incoming bytes available
/[from the server, read them and print them:
if (client.available()) {

char ¢ = client.read();

Serial.print(c);

/I if the server's disconnected, stop the client:
if ('client.connected()) {
Serial.printin();
Serial.printin("disconnecting.");

client.stop();

-22.

86Duino

/I do nothing forevermore:

while (true);

}

As the picture shows below, we can see the testing result.

-23-

86Duino

6.Acquiring the Netwrok Protocol Time

Continuing as before with the pictures (a) (b) shown below, connect one
end of Cat 5 cable to the Educake and the other end to the network switch.

(a). EduCake (b). Network Switch

The following program will enable the Educake to a become web client
able to acquire network protocol time.

UdpNtpClient

#include <SPI.h>

#include <Ethernet.h>

#include <EthernetUdp.h>

/[Enter a MAC address for your controller below.

/l Newer Ethernet shields have a MAC address printed on a sticker on
the shield

byte macl] ={
OxAA, 0xBB, 0xCC, 0xDD, OxEE, OxFF
5
IPAddress ip(192, 168, 30, 200);
IPAddress dnServer(168, 95, 1, 1); // the router's gateway address:
IPAddress gateway(192, 168, 30, 254);// the subnet:
IPAddress subnet(255, 255, 255, 0);
unsigned int localPort = 8888; // local port to listen for UDP packets

-24-

86Duino

www.86duino.com

char timeServer[] = "time.nist.gov"; // time.nist.gov NTP server

const int NTP_PACKET_SIZE = 48;

byte packetBuffer[NTP_PACKET _SIZE]; // A UDP instance to let us
send and receive packets over UDP

EthernetUDP Udp;

void setup()
{
/I Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; I/ wait for serial port to connect. Needed for Leonardo only
} /I start Ethernet and UDP
if (Ethernet.begin(mac) == 0) {
Serial.printin("Failed to configure Ethernet using DHCP");
/I no point in carrying on, so do nothing forevermore:
Ethernet.begin(mac, ip, dnServer, gateway, subnet);

}
Udp.begin(localPort);

void loop()
{

sendNTPpacket(timeServer); // send an NTP packet to a time server

/[wait to see if a reply is available
delay(1000);
if (Udp.parsePacket()) {

/[We've received a packet, read the data from it

-25.

86Duino

www.86duino.com

Udp.read(packetBuffer, NTP_PACKET_SIZE); // read the packet

into the buffer

bytes,

/lthe timestamp starts at byte 40 of the received packet and is four

/I or two words, long. First, esxtract the two words:

unsigned long highWord = word(packetBuffer[40], packetBuffer[41]);

unsigned long lowWord = word(packetBuffer[42], packetBuffer[43]);

/I combine the four bytes (two words) into a long integer
/I this is NTP time (seconds since Jan 1 1900):
unsigned long secsSince1900 = highWord << 16 | lowWord;

Serial.print("Seconds since Jan 1 1900 = ");

Serial.printin(secsSince1900);

/l now convert NTP time into everyday time:

Serial.print("Unix time =");

// Unix time starts on Jan 1 1970. In seconds, that's 2208988800:
const unsigned long seventyYears = 2208988800UL;

/I subtract seventy years:

unsigned long epoch = secsSincel900 - seventyYears;

Serial.printin(epoch);

/I print the hour, minute and second:

Serial.print("The UTC time is "); /I UTC is the time at Green-

wich Meridian (GMT)

Serial.print((epoch % 86400L) / 3600); // print the hour (86400

equals secs per day)

Serial.print(:");

-26 -

86Duino

www.86duino.com

if (((epoch % 3600) / 60) <10) {
/I In the first 10 minutes of each hour, we'll want a leading '0’
Serial.print('0’);

}

Serial.print((epoch % 3600) / 60); // print the minute (3600 equals
secs per minute)

Serial.print(":");
if ((epoch % 60) < 10) {
/I In the first 10 seconds of each minute, we'll want a leading '0’
Serial.print('0’);
}
Serial.printin(epoch % 60); // print the second
}
/l wait ten seconds before asking for the time again
delay(10000);

I/l send an NTP request to the time server at the given address

unsigned long sendNTPpacket(char* address)

{

/Il set all bytes in the buffer to O

memset(packetBuffer, 0, NTP_PACKET_SIZE);

/I Initialize values needed to form NTP request

Il (see URL above for details on the packets)
packetBuffer[0] = 0b11100011; // LI, Version, Mode
packetBuffer[1] = 0O; /I Stratum, or type of clock
packetBuffer[2] = 6; // Polling Interval
packetBuffer[3] = OXEC; // Peer Clock Precision

/] 8 bytes of zero for Root Delay & Root Dispersion

-27-

86Duino

www.86duino.com

packetBuffer[12] = 49;
packetBuffer[13] = Ox4E;
packetBuffer[14] = 49;
packetBuffer[15] = 52;

Il all NTP fields have been given values, now

/[you can send a packet requesting a timestamp:
Udp.beginPacket(address, 123); //NTP requests are to port 123
Udp.write(packetBuffer, NTP_PACKET _SIZE);
Udp.endPacket();

Below is the results of the network protocol time result.

-28-

86Duino

7. Telnet Chat Room

(a). EduCake (b). Network Switch

Using the same setup as all the other exercises with the Cat 5 cable,
EduCake, and Network switch weill be able to create a Telnet chat room server.

Telnet Chat Server

#include <SPI.h>

#include <Ethernet.h>

/[Enter a MAC address for your controller below.

/l Newer Ethernet shields have a MAC address printed on a sticker on the
shield

byte macl] ={
OxAA, 0xBB, 0xCC, 0xDD, OXEE, OxFF
5
IPAddress ip(192, 168, 30, 200);
IPAddress dnServer(168, 95, 1, 1); // the router's gateway address:
IPAddress gateway(192, 168, 30, 254);// the subnet:
IPAddress subnet(255, 255, 255, 0);
/I telnet defaults to port 23
EthernetServer server(23);

boolean alreadyConnected = false; // whether or not the client was con-
nected previously

-29.

86Duino

www.86duino.com

void setup() {
/l initialize the ethernet device
Ethernet.begin(mac, ip, gateway, subnet);
/I start listening for clients
server.begin();
/I Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {

; I/ wait for serial port to connect. Needed for Leonardo only

Serial.print("Chat server address:");

Serial.printin(Ethernet.locallP());

void loop() {
/I wait for a new client:

EthernetClient client = server.available();

/I when the client sends the first byte, say hello:
if (client) {
if (lalreadyConnected) {
/I clead out the input buffer:
client.flush();
Serial.printin("We have a new client");
client.printin("Hello, client!");

alreadyConnected = true;

-30-

