
Future Technology Devices International Limited (FTDI)

Unit1, 2 Seaward Place, Centurion Business Park,, Glasgow G41 1HH United Kingdom

Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758
E-Mail (Support): support1@ftdichip.com Web: http://www.ftdichip.com

Copyright © 2009 Future Technology Devices International Limited

Future Technology Devices International Ltd.

Application Note AN_109

Programming Guide for High Speed
FTCI2C DLL

Document Reference No.: FT_000110

Version 1.2

Issue Date: 2009-07-02

This document provides details of the function calls required when using the High
Speed FTCI2C.DLL

 Copyright © 2009 Future Technology Devices International Limited 1

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

1 Introduction.. 2

2 Application Programming Interface (API) .. 3

2.1 Public Functions .. 3

2.1.1 I2C_GetNumDevices ... 3

2.1.2 I2C_GetNumHiSpeedDevices ... 3

2.1.3 I2C_GetDeviceNameLocID ... 4

2.1.4 I2C_GetHiSpeedDeviceNameLocIDChannel .. 5

2.1.5 I2C_Open .. 6

2.1.6 I2C_OpenEx .. 7

2.1.7 I2C_OpenHiSpeedDevice ... 8

2.1.8 I2C_GetHiSpeedDeviceType .. 9

2.1.9 I2C_Close .. 10

2.1.10 I2C_CloseDevice ... 10

2.1.11 I2C_InitDevice ... 11

2.1.12 I2C_TurnOnDivideByFiveClockingHiSpeedDevice ... 12

2.1.13 I2C_TurnOffDivideByFiveClockingHiSpeedDevice ... 12

2.1.14 I2C_TurnOnThreePhaseDataClockingHiSpeedDevice ... 13

2.1.15 I2C_TurnOffThreePhaseDataClockingHiSpeedDevice ... 13

2.1.16 I2C_SetDeviceLatencyTimer ... 14

2.1.17 I2C_GetDeviceLatencyTimer .. 14

2.1.18 I2C_GetClock .. 15

2.1.19 I2C_GetHiSpeedDeviceClock ... 16

2.1.20 I2C_SetClock ... 16

2.1.21 I2C_SetLoopback .. 17

2.1.22 I2C_SetMode ... 19

2.1.23 I2C_SetGPIOs ... 20

2.1.24 I2C_SetHiSpeedDeviceGPIOs .. 21

2.1.25 I2C_GetGPIOs ... 22

2.1.26 I2C_GetHiSpeedDeviceGPIOs .. 24

2.1.27 I2C_Write ... 26

2.1.28 I2C_Read ... 29

2.1.29 I2C_GetDllVersion ... 31

2.1.30 I2C_GetErrorCodeString ... 31

3 Contact Information... 33

Appendix - Revision History ... 35

 Copyright © 2009 Future Technology Devices International Limited 2

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

1 Introduction

The FT2232D, FT2232H and FT4232H devices contains FTDI's multi-protocol synchronous

serial engine (MPSSE) controller, which may be used to interface with many popular

synchronous serial protocols including JTAG, SPI and I2C.

The FT2232 I2C API will provide a set of function's to allow a programmer to control the

FT2232D dual device MPSSE controller, the FT2232H dual device MPSSE hi-speed controller

and the FT4232H quad device MPSSE hi-speed controller, to communicate with other devices

using the Inter-Integrated Circuit (I2C) synchronous serial protocol interface. The FT2232 I2C

API will be contained within the FTCI2C.DLL.

The FTCI2C DLL has been created to allow application developers to use the FT2232D,

FT2232H and FT4232H devices to create a USB to Inter-Integrated Circuit (I2C) protocol
interface without any knowledge of the MPSSE command set. All of the functions in

FTCI2C.DLL can be replicated using calls to FTD2XX.DLL and sending the appropriate

commands to the MPSSE.

The FT2232D MPSSE controller is only available through channel A of the FT2232D device;

channel B of the FT2232D device does not support the MPSSE. Channel B may be controlled

independently using FTDI's FTCD2XX drivers while channel A is being used for I2C

communication.

The FT2232H MPSSE controller is available through channels A and B of the FT2232H device;

both channels A and B can be used for I2C communication.

The FT4232H MPSSE controller is only available through channels A and B of the FT4232H

device; channels C and D of the FT4232H device do not support the MPSSE. Channels C and D

may be controlled independently using FTDI's FTCD2XX drivers while channels A and B are

being used for I2C communication.

This document lists all of the functions available in FTCI2C.DLL.

 Copyright © 2009 Future Technology Devices International Limited 3

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

2 Application Programming Interface (API)

2.1 Public Functions

2.1.1 I2C_GetNumDevices

FTC_STATUS I2C_GetNumDevices(LPDWORD lpdwNumDevices)

This function must be used, if more than one FT2232D dual device will be connected to a

system. This function returns the number of available FT2232D dual device(s) connected to a

system.

Parameters

lpdwNumDevices Pointer to a variable of type DWORD which receives the

actual number of available FT2232D dual device(s)

connected to a system.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_IO_ERROR

2.1.2 I2C_GetNumHiSpeedDevices

FTC_STATUS I2C_GetNumHiSpeedDevices (LPDWORD lpdwTotalNumHiSpeedDevices)

This function must be used, if more than one FT2232H dual/FT4232H quad hi-speed devices

will be connected to a system. This function returns the number of available FT2232H dual and

FT4232H quad hi-speed device(s) connected to a system.

Parameters

lpdwTotalNumHiSpeedDevices Pointer to a variable of type DWORD which receives the

total number of available FT2232H dual and FT4232H quad

hi-speed device(s) connected to a system.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_IO_ERROR

 Copyright © 2009 Future Technology Devices International Limited 4

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

2.1.3 I2C_GetDeviceNameLocID

FTC_STATUS I2C_GetDeviceNameLocID (DWORD dwDeviceNameIndex, LPSTR

lpDeviceNameBuffer, DWORD dwBufferSize,

LPDWORD lpdwLocationID)

This function returns the name and the location identifier of the specified FT2232D dual device

connected to a system.

Parameters

dwDeviceNameIndex Index of the FT2232D dual device. Use the

FT2232D_GetNumDevices function call, see section

2.1.1, to get the number of available FT2232D dual

device(s) connected to a system. Example: if the

number of a specific FT2232D dual device returned

is 2 then valid index values will be 0 and 1.

lpDeviceNameBuffer Pointer to buffer that receives the device name of

the specified FT2232D dual device connected to a

system. The string will be NULL terminated.

dwBufferSize Length of the buffer created for the device name
string. Set buffer length to a minimum of 100

characters.

lpdwLocationID Pointer to a variable of type DWORD which receives

the location identifier of the specified FT2232D dual

device connected to a system.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_DEVICE_NOT_FOUND

FTC_INVALID_DEVICE_NAME_INDEX

FTC_NULL_ DEVICE_NAME_BUFFER_POINTER

FTC_ DEVICE_NAME_BUFFER_TOO_SMALL

FTC_IO_ERROR

 Copyright © 2009 Future Technology Devices International Limited 5

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

2.1.4 I2C_GetHiSpeedDeviceNameLocIDChannel

FTC_STATUS I2C_GetHiSpeedDeviceNameLocIDChannel (DWORD dwDeviceNameIndex,

LPSTR lpDeviceNameBuffer,

DWORD

dwDeviceNameBufferSize,

LPDWORD lpdwLocationID,

LPSTR lpChannelBuffer)

This function returns the name, location identifier and the channel of the specified FT2232H

dual hi-speed device or FT4232H quad hi-speed device connected to a system.

Parameters

dwDeviceNameIndex Index of the FT2232H dual hi-speed device or

FT4232H quad hi-speed device. Use the

I2C_GetNumHiSpeedDevices function call, see

section 2.1.2, to get the number of available

FT2232H dual and FT4232H quad hi-speed device(s)

connected to a system.

Example: if the number of FT2232H dual and FT4232H quad hi-speed device(s) returned is 2

then valid index values will be 0 and 1.

lpDeviceNameBuffer Pointer to buffer that receives the device name of

the specified FT2232H dual hi-speed device or

FT4232H quad hi-speed device connected to a

system. The string will be NULL terminated.

dwDeviceNameBufferSize Length of the buffer created for the device name

string. Set buffer length to a minimum of 100

characters.

lpdwLocationID Pointer to a variable of type DWORD which receives

the location identifier of the specified FT2232H dual

hi-speed device or FT4232H quad hi-speed device

connected to a system.

lpChannelBuffer Pointer to a buffer that receives the channel of the

specified FT2232H dual hi-speed device or FT4232H

quad hi-speed device connected to a system. The

buffer will only return a single character either A or

B. The string will be NULL terminated.

dwChannelBufferSize Length of the buffer created for the channel string.

Set buffer length to a minimum of 5 characters.

lpdwHiSpeedDeviceType Pointer to a variable of type DWORD which receives

the actual type of hi-speed device, FT2232H dual hi-

speed or FT4232H quad hi-speed.

Valid Hi-Speed Device Types

FT2232H_DEVICE_TYPE

FT4232H_DEVICE_TYPE

 Copyright © 2009 Future Technology Devices International Limited 6

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_DEVICE_NOT_FOUND

FTC_INVALID_DEVICE_NAME_INDEX

FTC_NULL_DEVICE_NAME_BUFFER_POINTER

FTC_ DEVICE_NAME_BUFFER_TOO_SMALL

FTC_NULL_CHANNEL_BUFFER_POINTER

FTC_CHANNEL_BUFFER_TOO_SMALL

FTC_IO_ERROR

2.1.5 I2C_Open

FTC_STATUS I2C_Open (FTC_HANDLE *pftHandle)

This function must only be used, if a maximum of one FT2232D dual device will be connected

to a system.

This function first determines which attached application is invoking this function. If an

attached application invokes this function again and it's assigned handle is still open then it's

assigned handle will be returned again. If another application attempts to open this device,

which is already in use, an error code is returned. This function first then determines if a

FT2232D dual device is present then checks that an application is not already using this

FT2232D dual device. If another application is not using this FT2232D dual device then an

attempt is made to open it. If the open was not successful an error code will be returned. If

the open is successful, the FT2232D dual device is initialized to its default state, see section

2.1.11. If the initialization was successful the handle is passed back to the application. If the

initialization was not successful an error code will be returned.

Parameters

pftHandle Pointer to a variable of type FTC_HANDLE where the

handle to the open device will be returned. This

handle must then be used in all subsequent calls to

access this device.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_DEVICE_NOT_FOUND

FTC_DEVICE_IN_USE

FTC_TOO_MANY_DEVICES

FTC_FAILED_TO_SYNCHRONIZE_DEVICE_MPSSE

FTC_FAILED_TO_COMPLETE_COMMAND

FTC_IO_ERROR

FTC_INSUFFICIENT_RESOURCES

 Copyright © 2009 Future Technology Devices International Limited 7

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

2.1.6 I2C_OpenEx

FTC_STATUS I2C_OpenEx (LPSTR lpDeviceName, DWORD dwLocationID, FTC_HANDLE

*pftHandle)

This function first determines which attached application is invoking this function. If an

attached application invokes this function again and it's assigned handle is still open then it's

assigned handle will be returned again. If another application attempts to open this device,
which is already in use, an error code is returned. This function first determines if the specified

FT2232D dual device is present then checks that an application is not already using the

specified FT2232D dual device. If another application is not using the specified FT2232D dual

device then an attempt is made to open it. If the open was not successful an error code will be

returned. If the open is successful, the specified FT2232D dual device is initialized to its default

state, see section 2.1.11. If the initialization was successful the handle is passed back to the

application. If the initialization was not successful an error code will be returned.

Parameters

lpDeviceName Pointer to a NULL terminated string that contains

the name of the specified FT2232D dual device to

be opened.

dwLocationID Specifies the location identifier of the specified

FT2232D dual device to be opened.

pftHandle Pointer to a variable of type FTC_HANDLE where the

handle to the open device will be returned. This

handle must then be used in all subsequent calls to

access this device.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_NULL_DEVICE_NAME_BUFFER_POINTER

FTC_INVALID_DEVICE_NAME

FTC_INVALID_LOCATION_ID

FTC_DEVICE_NOT_FOUND

FTC_DEVICE_IN_USE

FTC_FAILED_TO_SYNCHRONIZE_DEVICE_MPSSE

FTC_FAILED_TO_COMPLETE_COMMAND

FTC_IO_ERROR

FTC_INSUFFICIENT_RESOURCES

 Copyright © 2009 Future Technology Devices International Limited 8

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

2.1.7 I2C_OpenHiSpeedDevice

FTC_STATUS I2C_OpenHiSpeedDevice (LPSTR lpDeviceName, DWORD dwLocationID, LPSTR

lpChannel, FTC_HANDLE *pftHandle)

This function first determines which attached application is invoking this function. If an

attached application invokes this function again and it's assigned handle is still open then it's

assigned handle will be returned again. If another application attempts to open this device,
which is already in use, an error code is returned. This function first determines if the specified

FT2232H dual hi-speed device or FT4232H quad hi-speed device is present then checks that an

application is not already using the specified FT2232H dual hi-speed device or FT4232H quad

hi-speed device. If another application is not using the specified FT2232H dual hi-speed device

or FT4232H quad hi-speed device then an attempt is made to open it. If the open was not

successful an error code will be returned. If the open is successful, the specified FT2232H dual

hi-speed device or FT4232H quad hi-speed device is initialized to its default state, see section

2.1.11. If the initialization was successful the handle is passed back to the application. If the

initialization was not successful an error code will be returned.

Parameters

lpDeviceName Pointer to a NULL terminated string that contains

the name of the specified FT2232H dual hi-speed

device or FT4232H quad hi-speed device to be

opened.

dwLocationID Specifies the location identifier of the specified

FT2232H dual hi-speed device or FT4232H quad hi-

speed device to be opened.

lpChannel Pointer to a NULL terminated string that contains

the channel of the specified FT2232H dual hi-speed

device or FT4232H quad hi-speed device to be

opened. The channel identifier will be a single

character either A or B.

pftHandle Pointer to a variable of type FTC_HANDLE where the

handle to the open device will be returned. This

handle must then be used in all subsequent calls to

access this device.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_NULL_DEVICE_NAME_BUFFER_POINTER

FTC_INVALID_DEVICE_NAME

FTC_INVALID_LOCATION_ID

FTC_INVALID_CHANNEL

FTC_DEVICE_NOT_FOUND

FTC_DEVICE_IN_USE

 Copyright © 2009 Future Technology Devices International Limited 9

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

FTC_FAILED_TO_SYNCHRONIZE_DEVICE_MPSSE

FTC_FAILED_TO_COMPLETE_COMMAND

FTC_IO_ERROR

FTC_INSUFFICIENT_RESOURCES

2.1.8 I2C_GetHiSpeedDeviceType

FTC_STATUS I2C_GetHiSpeedDeviceType (FTC_HANDLE ftHandle, LPDWORD

lpdwHiSpeedDeviceType)

This function returns the high speed device type detected. The type should either be FT2232H

or FT4232H.

Parameters

ftHandle Handle of the FT2232H dual hi-speed device or

FT4232H quad hi-speed device opened.

lpdwHiSpeedDeviceType Pointer to a variable of type DWORD which receives

the device type.

Valid Hi-Speed Device Types

FT2232H_DEVICE_TYPE

FT4232H_DEVICE_TYPE

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_IO_ERROR

 Copyright © 2009 Future Technology Devices International Limited 10

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

2.1.9 I2C_Close

FTC_STATUS I2C_Close (FTC_HANDLE ftHandle)

This function closes a previously opened handle to a FT2232D dual device or FT2232H dual hi-

speed device or FT4232H quad hi-speed device.

Parameters

ftHandle Handle of the FT2232D dual device or FT2232H dual

hi-speed device or FT4232H quad hi-speed device to

close.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_IO_ERROR

2.1.10 I2C_CloseDevice

FTC_STATUS I2C_CloseDevice (FTC_HANDLE ftHandle, PFTC_CLOSE_FINAL_STATE_PINS

pCloseFinalStatePinsData)

This function closes a previously opened handle to a FT2232D dual device or FT2232H dual hi-

speed device or FT4232H quad hi-speed device.

Parameters

ftHandle Handle of the FT2232D dual device or FT2232H dual

hi-speed device or FT4232H quad hi-speed device to

close.

pCloseFinalStatePinsData Pointer to the structure that contains the data that is used

to set the final state of output pins TCK, TDI, TMS

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_IO_ERROR

 Copyright © 2009 Future Technology Devices International Limited 11

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

2.1.11 I2C_InitDevice

FTC_STATUS I2C_InitDevice (FTC_HANDLE ftHandle, DWORD dwClockDivisor)

This function initializes the FT2232D dual device, by carrying out the following in the following

order:

• resets the device and purge device USB input buffer

• sets the device USB input and output buffers to 64K bytes

• sets the special characters for the device, disable event and error characters

• sets the device read timeout to infinite

• sets the device write timeout to 5 seconds

• sets the device latency timer to 16 milliseconds

• reset MPSSE controller

• enable MPSSE controller

• synchronize the MPSSE

• resets the device and purge device USB input buffer
• set data in and data out clock frequency

• set MPSSE loopback state to off (default)

• resets the device and purge device USB input buffer

• reset Test Access Port(TAP) controller on an external device

• set the Test Access Port(TAP) controller on an external device to test idle mode

Parameters

ftHandle Handle of a FT2232D dual device.

dwClockDivisor Specifies a divisor, which will be used to set the

frequency that will be used to clock data in and out

of a FT2232D dual device. Valid range is 0 to 65535.

The highest clock frequency is represented by 0,
which is equivalent to 6MHz, the next highest clock

frequency is represented by 1, which is equivalent

to 3MHz and the lowest clock frequency is

represented by 65535, which is equivalent to 91Hz.

To obtain the actual frequency in Hz, represented by

the specified divisor, see section 2.1.18.

Note: the frequency in Hz, represented by the divisor, is calculated using the following

formula: frequency = 12MHz/((1 + dwClockDivisor) * 2).

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_INVALID_CLOCK_DIVISOR

FTC_FAILED_TO_SYNCHRONIZE_DEVICE_MPSSE

FTC_FAILED_TO_COMPLETE_COMMAND

 Copyright © 2009 Future Technology Devices International Limited 12

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

FTC_IO_ERROR

FTC_INSUFFICIENT_RESOURCES

2.1.12 I2C_TurnOnDivideByFiveClockingHiSpeedDevice

FTC_STATUS I2C_TurnOnDivideByFiveClockinghiSpeedDevice (FTC_HANDLE fthandle)

This function turns on the divide by five for the MPSSE clock to allow the hi-speed devices

FT2232H and FT4232H to clock at the same rate as the FT2232D device. This allows for

backward compatibility.

Parameters

ftHandle Handle of a FT2232H dual hi-speed device or

FT4232H quad hi-speed device.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_IO_ERROR

2.1.13 I2C_TurnOffDivideByFiveClockingHiSpeedDevice

FTC_STATUS I2C_TurnOffDivideByFiveClockinghiSpeedDevice (FTC_HANDLE fthandle)

This function turns off the divide by five for the MPSSE clock to allow the hi-speed devices

FT2232H and FT4232H to clock at the higher speeds. Maximum is 30Mbit/s

Parameters

ftHandle Handle of a FT2232H dual hi-speed device or

FT4232H quad hi-speed device.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_IO_ERROR

 Copyright © 2009 Future Technology Devices International Limited 13

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

2.1.14 I2C_TurnOnThreePhaseDataClockingHiSpeedDevice

FTC_STATUS I2C_TurnOnThreePhaseDataClockingHiSpeedDevice (FTC_HANDLE

ftHandle)

This function turns on 3 phase data clocking for a FT2232H dual hi-speed device or FT4232H

quad hi-speed device. Three phase data clocking, ensures the data is valid on both edges of a

clock.

Parameters

ftHandle Handle of a FT2232H dual hi-speed device or

FT4232H quad hi-speed device.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_IO_ERROR

2.1.15 I2C_TurnOffThreePhaseDataClockingHiSpeedDevice

FTC_STATUS I2C_TurnOffThreePhaseDataClockingHiSpeedDevice (FTC_HANDLE

ftHandle)

This function turns off 3 phase data clocking for a FT2232H dual hi-speed device or FT4232H

quad hi-speed device. The default is 2 phase data clocking ie the data is only valid for one

edge of a clock.

Parameters
ftHandle Handle of a FT2232H dual hi-speed device or

FT4232H quad hi-speed device.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_IO_ERROR

 Copyright © 2009 Future Technology Devices International Limited 14

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

2.1.16 I2C_SetDeviceLatencyTimer

FTC_STATUS I2C_SetDeviceLatencyTimer (FTC_HANDLE ftHandle, BYTE timerValue)

This function sets the value in milliseconds of the latency timer for a FT2232D dual device or

FT2232H dual hi-speed device or FT4232H quad hi-speed device. The latency timer is used to

flush any remaining data received from a FT2232D dual device or FT2232H dual hi-speed

device or FT4232H quad hi-speed device from the USB input buffer, when the latency timer
times out.

Parameters

ftHandle Handle of a FT2232D dual device or FT2232H dual

hi-speed device or FT4232H quad hi-speed device.

timerValue Specifies the value, in milliseconds, of the latency

timer. Valid range is 2 - 255.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_INVALID_TIMER_VALUE

FTC_IO_ERROR

2.1.17 I2C_GetDeviceLatencyTimer

FTC_STATUS I2C_GetDeviceLatencyTimer (FTC_HANDLE ftHandle, LPBYTE lpTimerValue)

This function gets the value in milliseconds of the latency timer for a FT2232D dual device or

FT2232H dual hi-speed device or FT4232H quad hi-speed device. The latency timer is used to

flush any remaining data received from a FT2232D dual device or FT2232H dual hi-speed
device or FT4232H quad hi-speed device from the USB input buffer, when the latency timer

times out.

Parameters

ftHandle Handle of a FT2232D dual device or FT2232H dual

hi-speed device or FT4232H quad hi-speed device.

lpTimerValue Pointer to a variable of type BYTE which receives

the actual latency timer value in milliseconds.

 Copyright © 2009 Future Technology Devices International Limited 15

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_IO_ERROR

2.1.18 I2C_GetClock

FTC_STATUS I2C_GetClock (DWORD dwClockDivisor, LPDWORD lpdwClockFrequencyHz)

This function calculates the frequency in Hz for a given clock divisor value, that data will be

clocked in and out of a FT2232D dual device.

Parameters

dwClockDivisor Specifies a divisor, which will be used to calculate

the frequency that will be used to clock data in and

out of a FT2232D dual device. Valid range is 0 to

65535. The highest clock frequency is represented

by 0, which is equivalent to 6MHz, the next highest

clock frequency is represented by 1, which is

equivalent to 3MHz and the lowest clock frequency

is represented by 65535, which is equivalent to

91Hz.

lpdwClockFrequencyHz Pointer to a variable of type DWORD which receives

the actual frequency in Hz, that data will be

clocked in and out of a FT2232D dual device.

Note: the frequency in Hz, represented by the divisor, is calculated using the following

formula: frequency = 12MHz/((1 + dwClockDivisor) * 2).

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following
error codes:

FTC_INVALID_CLOCK_DIVISOR

 Copyright © 2009 Future Technology Devices International Limited 16

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

2.1.19 I2C_GetHiSpeedDeviceClock

FTC_STATUS I2C_GetHiSpeedDeviceClock (DWORD dwClockDivisor, LPDWORD

lpdwClockFrequencyHz)

This function calculates the frequency in Hz, that data will be clocked in and out of a FT2232H

dual hi-speed device or FT4232H quad hi-speed device.

Parameters
dwClockDivisor Specifies a divisor, which will be used to set the

frequency that will be used to clock data in and out

of a FT2232H dual hi-speed device or FT4232H quad

hi-speed device. Valid range is 0 to 65535. The

highest clock frequency is represented by 0, which

is equivalent to 30MHz, the next highest clock

frequency is represented by 1, which is equivalent

to 15MHz and the lowest clock frequency is

represented by 65535, which is equivalent to

457Hz.

lpdwClockFrequencyHz Pointer to a variable of type DWORD which receives

the actual frequency in Hz, that data will be clocked
in and out of a FT2232H dual hi-speed device or

FT4232H quad hi-speed device.

Note: the frequency in Hz, represented by the divisor, is calculated using the following

formula: frequency = 60MHz/((1 + dwClockDivisor) * 2).

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_CLOCK_DIVISOR

2.1.20 I2C_SetClock

FTC_STATUS I2C_SetClock (FTC_HANDLE ftHandle, DWORD dwClockDivisor, LPDWORD

lpdwClockFrequencyHz)

This function sets and calculates the frequency in Hz, that data will be clocked in and out of a

FT2232D dual device or FT2232H dual hi-speed device or FT4232H quad hi-speed device.

 Copyright © 2009 Future Technology Devices International Limited 17

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

Parameters

ftHandle Handle of a FT2232D dual device or FT2232H dual

hi-speed device or FT4232H quad hi-speed device.

dwClockDivisor Specifies a divisor, which will be used to set the

frequency that will be used to clock data in and out

of a FT2232D dual device or FT2232H dual hi-speed

device or FT4232H quad hi-speed device. Valid

range is 0 to 65535. The highest clock frequency is

represented by 0, which is equivalent to 6MHz for

the FT2232D dual device and 30MHz for the

FT2232H dual and FT4232H quad hi-speed devices,

the next highest clock frequency is represented by

1, which is equivalent to 3MHz for the FT2232D dual

device and 15MHz for the FT2232H dual and

FT4232H quad hi-speed devices and the lowest

clock frequency is represented by 65535, which is

equivalent to 91Hz for the FT2232D dual device and

457Hz for the FT2232H dual and FT4232H quad hi-

speed devices.

lpdwClockFrequencyHz Pointer to a variable of type DWORD which receives

the actual frequency in Hz, that data will be clocked

in and out of a FT2232D dual device or FT2232H
dual hi-speed device or FT4232H quad hi-speed

device.

For the FT2232D dual device the frequency in Hz, represented by the divisor, is calculated

using the following formula: frequency = 12MHz/((1 + dwClockDivisor) * 2)

For the FT2232H dual and FT4232H quad hi-speed devices the frequency in Hz, represented by

the divisor, is calculated using the following formula: frequency = 60MHz/((1 +

dwClockDivisor) * 2)

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_INVALID_CLOCK_DIVISOR

FTC_FAILED_TO_COMPLETE_COMMAND

FTC_IO_ERROR

2.1.21 I2C_SetLoopback

FTC_STATUS I2C_SetLoopback (FTC_HANDLE ftHandle, BOOL bLoopbackState)

This function controls the state of the FT2232D dual device or FT2232H dual hi-speed device or

FT4232H quad hi-speed device loopback. The FT2232D dual device or FT2232H dual hi-speed

device or FT4232H quad hi-speed device is set to loopback for testing purposes.

 Copyright © 2009 Future Technology Devices International Limited 18

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

Parameters

ftHandle Handle of the FT2232D dual device or FT2232H dual

hi-speed device or FT4232H quad hi-speed device.

bLoopbackState Controls the state of the FT2232D dual device or

FT2232H dual hi-speed device or FT4232H quad hi-

speed device loopback. To switch loopback

on(TRUE) or off(FALSE).

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_FAILED_TO_COMPLETE_COMMAND

FTC_IO_ERROR

 Copyright © 2009 Future Technology Devices International Limited 19

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

2.1.22 I2C_SetMode

FTC_STATUS I2C_SetMode (FTC_HANDLE ftHandle, DWORD dwCommsMode)

This function specifies the communications mode of an external device ie a device attached to

a FT2232D dual device or FT2232H dual hi-speed device or FT4232H quad hi-speed device. A

FT2232D dual device or FT2232H dual hi-speed device or FT4232H quad hi-speed device

communicates with an external device by simulating the I2C synchronous protocol. Default is

FAST_MODE.

Parameters

ftHandle Handle of a FT2232D dual device.

dwCommsMode Specifies the communications mode of an

external device.

Valid Communications Modes

STANDARD_MODE

FAST_MODE

STRETCH_DATA_MODE

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_INVALID_COMMS_MODE

 Copyright © 2009 Future Technology Devices International Limited 20

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

2.1.23 I2C_SetGPIOs

FTC_STATUS I2C_SetGPIOs (FTC_HANDLE ftHandle, PFTC_INPUT_OUTPUT_PINS

pHighInputOutputPinsData)

This function controls the use of the 4 general purpose higher input/output pins (GPIOH1 –

GPIOH4) of the FT2232D dual device.

Parameters
ftHandle Handle of a FT2232D dual device.

pHighInputOutputPinsData Pointer to the structure that contains the data that

is used to control the 4 general purpose higher

input/output pins (GPIOH1 – GPIOH4) of the

FT2232D dual device.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_NULL_INPUT_OUTPUT_BUFFER_POINTER

FTC_FAILED_TO_COMPLETE_COMMAND

FTC_IO_ERROR

Example:

typedef struct FTC_Input_Output_Pins {

BOOL bPin1InputOutputState; Set pin1 to input mode(FALSE), set pin1 to output mode(TRUE)

BOOL bPin1LowHighState; If pin1 is set to output mode, set pin1 low(FALSE), high(TRUE)

BOOL bPin2InputOutputState; Set pin2 to input mode(FALSE), set pin2 to output mode(TRUE)

BOOL bPin2LowHighState; If pin2 is set to output mode, set pin2 low(FALSE), high(TRUE)

BOOL bPin3InputOutputState; Set pin3 to input mode(FALSE), set pin3 to output mode(TRUE)

BOOL bPin3LowHighState; If pin3 is set to output mode, set pin3 low(FALSE), high(TRUE)

BOOL bPin4InputOutputState; Set pin4 to input mode(FALSE), set pin4 to output mode(TRUE)

BOOL bPin4LowHighState; If pin4 is set to output mode, set pin4 low(FALSE), high(TRUE)

} FTC_INPUT_OUTPUT_PINS *PFTC_INPUT_OUTPUT_PINS

 Copyright © 2009 Future Technology Devices International Limited 21

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

2.1.24 I2C_SetHiSpeedDeviceGPIOs

FTC_STATUS I2C_SetHiSpeedDeviceGPIOs (FTC_HANDLE ftHandle, BOOL

bControlLowInputOutputPins,

PFTC_INPUT_OUTPUT_PINS

pLowInputOutputPinsData, BOOL

bControlHighinputOutputPins,

PFTH_INPUT_OUTPUT_PINS

pHighInputOutputPinsData)

This function controls the use of the 8 general purpose higher input/output pins (GPIOH1 –

GPIOH8) of the FT2232H dual hi-speed device.

Parameters

ftHandle Handle of the FT2232H dual hi-speed device.

bControlLowInputOutputPins True if you want to control GPIOL1 to GPIOL4 other

wise false.

pLowInputOutputPinsData Pointer to the structure that contains the data that

is used to control the 4 general purpose lower

input/output pins (GPIOL1 – GPIOL4) of the

FT2232H dual hi-speed device.

bControlHighInputOutputPins True if you want to control GPIOH1 to GPIOH8 other

wise false.

pHighInputOutputPinsData Pointer to the structure that contains the data that

is used to control the 8 general purpose higher

input/output pins (GPIOH1 – GPIOH8) of the

FT2232H dual hi-speed device.

Note: the 8 general purpose higher input/output pins (GPIOH1 – GPIOH8) do not physically

exist on the FT4232H quad hi-speed device.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_NULL_INPUT_OUTPUT_BUFFER_POINTER

FTC_FAILED_TO_COMPLETE_COMMAND

FTC_IO_ERROR

 Copyright © 2009 Future Technology Devices International Limited 22

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

Example:

typedef struct FTC_Input_Output_Pins {

BOOL bPin1InputOutputState; Set pin1 to input mode(FALSE), set pin1 to output mode(TRUE)

BOOL bPin1LowHighState; If pin1 is set to output mode, set pin1 low(FALSE), high(TRUE)

BOOL bPin2InputOutputState; Set pin2 to input mode(FALSE), set pin2 to output mode(TRUE)

BOOL bPin2LowHighState; If pin2 is set to output mode, set pin2 low(FALSE), high(TRUE)

BOOL bPin3InputOutputState; Set pin3 to input mode(FALSE), set pin3 to output mode(TRUE)

BOOL bPin3LowHighState; If pin3 is set to output mode, set pin3 low(FALSE), high(TRUE)

BOOL bPin4InputOutputState; Set pin4 to input mode(FALSE), set pin4 to output mode(TRUE)

BOOL bPin4LowHighState; If pin4 is set to output mode, set pin4 low(FALSE), high(TRUE)

} FTC_INPUT_OUTPUT_PINS *PFTC_INPUT_OUTPUT_PINS

typedef struct FTH_Input_Output_Pins {

 BOOL bPin1InputOutputState; Set pin1 to input mode(FALSE), set pin1 to output mode(TRUE)

 BOOL bPin1LowHighState; If pin1 is set to output mode, set pin1 low(FALSE), high(TRUE)

 BOOL bPin2InputOutputState; Set pin2 to input mode(FALSE), set pin2 to output mode(TRUE)

 BOOL bPin2LowHighState; If pin2 is set to output mode, set pin2 low(FALSE), high(TRUE)

 BOOL bPin3InputOutputState; Set pin3 to input mode(FALSE), set pin3 to output mode(TRUE)

 BOOL bPin3LowHighState; If pin3 is set to output mode, set pin3 low(FALSE), high(TRUE)

 BOOL bPin4InputOutputState; Set pin4 to input mode(FALSE), set pin4 to output mode(TRUE)

 BOOL bPin4LowHighState; If pin4 is set to output mode, set pin4 low(FALSE), high(TRUE)

 BOOL bPin5InputOutputState; Set pin5 to input mode(FALSE), set pin5 to output mode(TRUE)

 BOOL bPin5LowHighState; If pin5 is set to output mode, set pin5 low(FALSE), high(TRUE)

 BOOL bPin6InputOutputState; Set pin6 to input mode(FALSE), set pin6 to output mode(TRUE)

 BOOL bPin6LowHighState; If pin6 is set to output mode, set pin6 low(FALSE), high(TRUE)

 BOOL bPin7InputOutputState; Set pin7 to input mode(FALSE), set pin7 to output mode(TRUE)

 BOOL bPin7LowHighState; If pin7 is set to output mode, set pin7 low(FALSE), high(TRUE)

 BOOL bPin8InputOutputState; Set pin8 to input mode(FALSE), set pin8 to output mode(TRUE)

 BOOL bPin8LowHighState; If pin8 is set to output mode, set pin8 low(FALSE), high(TRUE)

} FTH_INPUT_OUTPUT_PINS *PFTH_INPUT_OUTPUT_PINS

2.1.25 I2C_GetGPIOs

FTC_STATUS I2C_GetGPIOs (FTC_HANDLE ftHandle, PFTC_LOW_HIGH_PINS

pHighPinsInputData)

This function gets the input states(low or high) of the 4 general purpose higher input/output

pins (GPIOH1 – GPIOH4) of the FT2232D dual device.

 Copyright © 2009 Future Technology Devices International Limited 23

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

Parameters

ftHandle Handle of a FT2232D dual device.

pHighPinsInputData Pointer to the structure that contains the input

states(low or high) of the 4 general purpose higher

input/output pins (GPIOH1 - GPIOH4) of the

FT2232D dual device.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_NULL_INPUT_BUFFER_POINTER

FTC_FAILED_TO_COMPLETE_COMMAND

FTC_IO_ERROR

Example:

typedef struct FTC_Low_High_Pins {

 BOOL bPin1LowHighState; Pin1 input state low(FALSE), high(TRUE)

 BOOL bPin2LowHighState; Pin2 input state low(FALSE), high(TRUE)

 BOOL bPin3LowHighState; Pin3 input state low(FALSE), high(TRUE)

 BOOL bPin4LowHighState; Pin4 input state low(FALSE), high(TRUE)

} FTC_LOW_HIGH_PINS *PFTC_LOW_HIGH_PINS

 Copyright © 2009 Future Technology Devices International Limited 24

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

2.1.26 I2C_GetHiSpeedDeviceGPIOs

FTC_STATUS I2C_GetHiSpeedDeviceGPIOs (FTC_HANDLE ftHandle, PFTH_LOW_HIGH_PINS

pHighPinsInputData)

This function gets the input states (low or high) of the 8 general purpose input/output pins

(GPIOH1 – GPIOH8) of the FT2232H dual hi-speed device.

Parameters

ftHandle Handle of the FT2232H dual hi-speed device.

bControlLowInputOutputPins True if you want to control GPIOL1 to GPIOL4 other

wise false.

pLowInputOutputPinsData Pointer to the structure that contains the data that

is used to control the 4 general purpose lower

input/output pins (GPIOL1 – GPIOL4) of the

FT2232H dual hi-speed device.

bControlHighInputOutputPins True if you want to control GPIOH1 to GPIOH8 other

wise false.

pHighInputOutputPinsData Pointer to the structure that contains the data that

is used to control the 8 general purpose higher

input/output pins (GPIOH1 – GPIOH8) of the

FT2232H dual hi-speed device.

Note: the 8 general purpose higher input/output pins (GPIOH1 – GPIOH8) do not physically

exist on the FT4232H quad hi-speed device.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_NULL_INPUT_OUTPUT_BUFFER_POINTER

FTC_FAILED_TO_COMPLETE_COMMAND

FTC_IO_ERROR

 Copyright © 2009 Future Technology Devices International Limited 25

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

Example:

typedef struct FTC_Input_Output_Pins {

BOOL bPin1InputOutputState; Set pin1 to input mode(FALSE), set pin1 to output mode(TRUE)

BOOL bPin1LowHighState; If pin1 is set to output mode, set pin1 low(FALSE), high(TRUE)

BOOL bPin2InputOutputState; Set pin2 to input mode(FALSE), set pin2 to output mode(TRUE)

BOOL bPin2LowHighState; If pin2 is set to output mode, set pin2 low(FALSE), high(TRUE)

BOOL bPin3InputOutputState; Set pin3 to input mode(FALSE), set pin3 to output mode(TRUE)

BOOL bPin3LowHighState; If pin3 is set to output mode, set pin3 low(FALSE), high(TRUE)

BOOL bPin4InputOutputState; Set pin4 to input mode(FALSE), set pin4 to output mode(TRUE)

BOOL bPin4LowHighState; If pin4 is set to output mode, set pin4 low(FALSE), high(TRUE)

} FTC_INPUT_OUTPUT_PINS *PFTC_INPUT_OUTPUT_PINS

typedef struct FTH_Low_High_Pins {

 BOOL bPin1LowHighState; Pin1 input state low(FALSE), high(TRUE)

 BOOL bPin2LowHighState; Pin2 input state low(FALSE), high(TRUE)

 BOOL bPin3LowHighState; Pin3 input state low(FALSE), high(TRUE)

 BOOL bPin4LowHighState; Pin4 input state low(FALSE), high(TRUE)

 BOOL bPin5LowHighState; Pin5 input state low(FALSE), high(TRUE)

 BOOL bPin6LowHighState; Pin6 input state low(FALSE), high(TRUE)

 BOOL bPin7LowHighState; Pin7 input state low(FALSE), high(TRUE)

 BOOL bPin8LowHighState; Pin8 input state low(FALSE), high(TRUE)

} FTH_LOW_HIGH_PINS *PFTH_LOW_HIGH_PINS

 Copyright © 2009 Future Technology Devices International Limited 26

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

2.1.27 I2C_Write

FTC_STATUS I2C_Write (FTC_HANDLE ftHandle, PWriteControlByteBuffer

pWriteControlBuffer, DWORD dwNumControlBytesToWrite, BOOL

bControlAcknowledge, DWORD dwControlAckTimeoutmSecs, BOOL

bStopCondition, DWORD dwDataWriteTypes, PWriteDataByteBuffer

pWriteDataBuffer, DWORD dwNumDataBytesToWrite, BOOL

bDataAcknowledge, DWORD dwDataAckTimeoutmSecs, PFTC_
PAGE_WRITE_DATA pPageWriteData)

This function writes data to an external device ie a device attached to a FT2232D dual device

or FT2232H dual hi-speed device or FT4232H quad hi-speed device. A FT2232D dual device or

FT2232H dual hi-speed device or FT4232H quad hi-speed device communicates with an

external device by simulating the I2C synchronous protocol.

Parameters

ftHandle Handle of a FT2232D dual device or FT2232H dual

hi-speed device or FT4232H quad hi-speed device.

pWriteControlBuffer Pointer to buffer that contains the control and

address data to be written to an external device.

Listed below are four examples of control and

address bytes:

Control Address byte, Address byte

Control Address byte, Address byte 1, Address byte 0

Control Address byte, Control byte, Address byte

Control Address byte, Control byte 1 … Control byte n

dwNumControlBytesToWrite Specifies the number of bytes in the write data

buffer, to be written to an external device. Valid

range 1 to 255 bytes.

bControlAcknowledge Check for acknowledgement after every control byte
is written to an external device, acknowledgement

required(TRUE), acknowledgement not

required(FALSE).

dwControlAckTimeoutmSecs Timeout interval in milliseconds to wait for an

acknowledgement after a control byte has been

written to an external device. A value of INFINITE

indicates, timeout never expires waiting for an

acknowledgement. Only valid when

bControlAcknowledge variable is TRUE.

 Copyright © 2009 Future Technology Devices International Limited 27

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

bStopCondition Send a Stop condition, after all control bytes have

been written to an external device, send Stop

condition(TRUE), do not send Stop

condition(FALSE).

dwDataWriteTypes Specifies the type of write to be used, when the

data contained in the write data buffer is written to

an external device. Write no data, write the data

one byte at a time or write the data in pages, ex :-

8 pages of 8 bytes per page.

Valid Data Write Types

NO_WRITE_TYPE

BYTE_WRITE_TYPE

PAGE_WRITE_TYPE

pWriteDataBuffer Pointer to buffer that contains the data to be written

to external device.

dwNumDataBytesToWrite Specifies the number of bytes in the write data

buffer, to be written to an external device. Valid
range 1 to 65535 ie 64K bytes. If NO_WRITE_TYPE

specified, no data bytes will be written to external

device. If BYTE_WRITE_TYPE specified, only one

data byte will be written to external device.

bDataAcknowledge Check for acknowledgement after every data byte is

written to an external device, acknowledgement

required(TRUE), acknowledgement not
required(FALSE).

dwDataAckTimeoutmSecs Timeout interval in milliseconds to wait for an

acknowledgement after a data byte has been

written to an external device. A value of INFINITE

indicates, timeout never expires waiting for an

acknowledgement. Only valid, if bDataAcknowledge

variable is TRUE.

pPageWriteData Pointer to a structure that contains the number of

pages and the number of bytes per page to be

written to an external device.

 Copyright © 2009 Future Technology Devices International Limited 28

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_NULL_CONTROL_DATA_BUFFER_POINTER

 FTC_INVALID_NUMBER_CONTROL_BYTES

 FTC_CONTROL_ACKNOWLEDGE_TIMEOUT

FTC_NULL_WRITE_DATA_BUFFER_POINTER

FTC_INVALID_NUMBER_DATA_BYTES_WRITE

FTC_DATA_ACKNOWLEDGE_TIMEOUT

FTC_INVALID_WRITE_TYPE

FTC_NUMBER_BYTES_TOO_SMALL_PAGE_WRITE

FTC_NULL_PAGE_WRITE_BUFFER_POINTER

FTC_FAILED_TO_COMPLETE_COMMAND

FTC_IO_ERROR

Example:

#define MAX_WRITE_CONTROL_BYTES_BUFFER_SIZE 256 // 256 bytes

typedef BYTE WriteControlByteBuffer[MAX_WRITE_CONTROL_BYTES_BUFFER_SIZE];

typedef WriteControlByteBuffer *PWriteControlByteBuffer;

typedef struct FTC_Page_Write_Data {

 DWORD dwNumPages;

 DWORD dwNumBytesPerPage;

} FTC_PAGE_WRITE_DATA *PFTC_ PAGE_WRITE_DATA

#define MAX_WRITE_DATA_BYTES_BUFFER_SIZE 65536 // 64K bytes

typedef BYTE WriteDataByteBuffer[MAX_WRITE_DATA_BYTES_BUFFER_SIZE];

typedef WriteDataByteBuffer *PWriteDataByteBuffer;

 Copyright © 2009 Future Technology Devices International Limited 29

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

2.1.28 I2C_Read

FTC_STATUS I2C_Read (FTC_HANDLE ftHandle, PWriteControlByteBuffer pWriteControlBuffer,

DWORD dwNumControlBytesToWrite, BOOL bControlAcknowledge,

DWORD dwControlAckTimeoutmSecs, DWORD dwDataReadTypes,

PReadDataByteBuffer pReadDataBuffer, DWORD

dwNumDataBytesToRead)

This function reads data from an external device ie a device attached to a FT2232D dual device
or FT2232H dual hi-speed device or FT4232H quad hi-speed device. A FT2232D dual device or

FT2232H dual hi-speed device or FT4232H quad hi-speed device communicates with an

external device by simulating the I2C synchronous protocol.

Parameters

ftHandle Handle of a FT2232D dual device or FT2232H dual

hi-speed device or FT4232H quad hi-speed device.

pWriteControlBuffer Pointer to buffer that contains the control and

address data to be written to an external device.

Listed below are three examples of control address

bytes:

Control Address byte, Address byte

Control Address byte, Address byte 1, Address byte 0

Control Address byte, Control byte, Address byte

Control Address byte, Control byte 1 … Control byte n

dwNumControlBytesToWrite Specifies the number of bytes in the write data

buffer, to be written to an external device. Valid

range 1 to 255 bytes.

bControlAcknowledge Check for acknowledgement after every control byte

is written to an external device, acknowledgement

required(TRUE), acknowledgement not

required(FALSE).

dwControlAckTimeoutmSecs Timeout interval in milliseconds to wait for an acknowledgement

after a control byte has been written to an external device. A value of INFINITE indicates,

timeout never expires waiting for an acknowledgement. Only valid, if bControlAcknowledge

variable is TRUE.

dwDataReadTypes Specifies the type of read to be used, when data is

to be read from an external device. Read the

specified number of data bytes one byte at a time or

read the specified number of data bytes in one

continuous block.

 Copyright © 2009 Future Technology Devices International Limited 30

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

Valid Data Read Types

BYTE_READ_TYPE

BLOCK_READ_TYPE

pReadDataBuffer Pointer to buffer that contains the data read from an

external device.

dwNumDataBytesToRead Specifies the number of bytes to be read from an external
device. Valid range 1 to 65535. I.E. 64K bytes. If

BYTE_READ_TYPE specified, only one byte will be
returned in the read data buffer.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_INVALID_HANDLE

FTC_NULL_CONTROL_DATA_BUFFER_POINTER

FTC_INVALID_NUMBER_CONTROL_BYTES

FTC_CONTROL_ACKNOWLEDGE_TIMEOUT

FTC_NULL_READ_DATA_BUFFER_POINTER

FTC_INVALID_NUMBER_DATA_BYTES_READ

FTC_INVALID_READ_TYPE

FTC_FAILED_TO_COMPLETE_COMMAND

FTC_IO_ERROR

Example:

#define MAX_WRITE_CONTROL_BYTES_BUFFER_SIZE 256 // 256 bytes

typedef BYTE WriteControlByteBuffer[MAX_WRITE_CONTROL_BYTES_BUFFER_SIZE];

typedef WriteControlByteBuffer *PWriteControlByteBuffer;

#define MAX_READ_DATA_BYTES_BUFFER_SIZE 65536 // 64K bytes

typedef BYTE ReadDataByteBuffer[MAX_READ_DATA_BYTES_BUFFER_SIZE];

typedef ReadDataByteBuffer *PReadDataByteBuffer;

 Copyright © 2009 Future Technology Devices International Limited 31

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

2.1.29 I2C_GetDllVersion

FTC_STATUS I2C_GetDllVersion (LPSTR lpDllVersionBuffer, DWORD dwBufferSize)

This function returns the version of this DLL.

Parameters

lpDllVersionBuffer Pointer to the buffer that receives the version of this
DLL. The string will be NULL terminated.

dwBufferSize Length of the buffer created for the device name string. Set

buffer length to a minimum of 10 characters.

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_NULL_DLL_VERSION_BUFFER_POINTER

FTC_DLL_VERSION_BUFFER_TOO_SMALL

2.1.30 I2C_GetErrorCodeString

FTC_STATUS I2C_GetErrorCodeString (LPSTR lpLanguage, FTC_STATUS StatusCode, LPSTR

lpErrorMessageBuffer, DWORD dwBufferSize)

This function returns the error message for the specified error code, to be used for display

purposes by an application programmer. The error code passed into this function must have

been returned from a function within this DLL.

Parameters

lpLanguage Pointer to a NULL terminated string that contains

the language code.

Default for this first version the default language will be English(EN).

StatusCode Status code returned from a previous DLL function

call.

lpErrorMessageBuffer Pointer to the buffer that receives the error

message. The error message represents the

description of the status code. The string will be

NULL terminated. If an unsupported language code

or invalid status code is passed in to this function,

the returned error message will reflect this.

dwBufferSize Length of the buffer created for the error message string.

Set buffer length to a minimum of 100 characters.

 Copyright © 2009 Future Technology Devices International Limited 32

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

Return Value

Returns FTC_SUCCESS if successful, otherwise the return value will be one of the following

error codes:

FTC_NULL_LANGUAGE_CODE_BUFFER_POINTER

FTC_INVALID_LANGUAGE_CODE

FTC_INVALID_STATUS_CODE

FTC_NULL_ERROR_MESSAGE_BUFFER_POINTER

FTC_ERROR_MESSAGE_BUFFER_TOO_SMALL

 Copyright © 2009 Future Technology Devices International Limited 33

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

3 Contact Information

Head Office – Glasgow, UK

Future Technology Devices International Limited

Unit 1, 2 Seaward Place, Centurion Business Park

Glasgow G41 1HH
United Kingdom

Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com

E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com

Web Site URL http://www.ftdichip.com

Web Shop URL http://www.ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited (Taiwan)
2F, No. 516, Sec. 1, NeiHu Road

Taipei 114
Taiwan , R.O.C.

Tel: +886 (0) 2 8791 3570

Fax: +886 (0) 2 8791 3576

E-mail (Sales) tw.sales1@ftdichip.com

E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com

Web Site URL http://www.ftdichip.com

Branch Office – Hillsboro, Oregon, USA

Future Technology Devices International Limited (USA)

7235 NW Evergreen Parkway, Suite 600
Hillsboro, OR 97123-5803

USA
Tel: +1 (503) 547 0988

Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.admin@ftdichip.com

Web Site URL http://www.ftdichip.com

Branch Office – Shanghai, China

Future Technology Devices International Limited (China)
Room 408, 317 Xianxia Road,
ChangNing District,
ShangHai, China

Tel: +86 (21) 62351596
Fax: +86(21) 62351595

E-Mail (Sales): cn.sales@ftdichip.com
E-Mail (Support): cn.support@ftdichip.com
E-Mail (General Enquiries): cn.admin1@ftdichip.com
Web Site URL: http://www.ftdichip.com

 Copyright © 2009 Future Technology Devices International Limited 34

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and

sales representative(s) in your country.

Vinculum is part of Future Technology Devices International Ltd. Neither the whole nor any part of the information contained in, or the

product described in this manual, may be adapted or reproduced in any material or electronic form without the prior written consent of
the copyright holder. This product and its documentation are supplied on an as-is basis and no warranty as to their suitability for any

particular purpose is either made or implied. Future Technology Devices International Ltd will not accept any claim for damages

howsoever arising as a result of use or failure of this product. Your statutory rights are not affected. This product or any variant of it is

not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to
result in personal injury. This document provides preliminary information that may be subject to change without notice. No freedom to

use patents or other intellectual property rights is implied by the publication of this document. Future Technology Devices International
Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH United Kingdom. Scotland Registered Number: SC136640

 Copyright © 2009 Future Technology Devices International Limited 35

Document Reference No.: FT_000110

Programming Guide for High Speed FTCI2C DLL Application Note AN_109
Version 1.2

Clearance No.: FTDI# 82

Appendix - Revision History

Revision History

Draft Initial Draft December, 2008

1.0 Initial Release 21st January, 2009

1.1 Corrections to add missing commands

 Corrected Taiwan Address 18th March 2009

1.2 Corrected I2C_SetHiSpeedDeviceGPIOs and

I2CGetHiSpeedDeviceGPIOs to include all the

necessary parameters 2nd July 2009

