
86Duino
www.86duino.com

-1-

EduCake Robotic Rover

1. Robotic Rover (Automated Vehicle)

In the previous chapters, we talked about different sensors and control on the

86Duino hardware platform. In this chapter, we will implement a robotic rover

using an 86Duino EduCake as the controller, with some of these sensors and

control.

There are many area a robotic rover can be useful, such as the high profile Mars

Rover we sent to explore the planet Mars, which roam around Mars’ surface,

capturing images and collecting valuable scientific data to send back to Earth.

http://en.wikipedia.org/wiki/Mars_rover

While the Mars Rover seems like from a science-fiction story that is not

achievable by most of the average developer, there are other automated robotic

vehicles designed with functionality to serve purposes which many of us can

relate to, such as:

86Duino
www.86duino.com

-2-

 Google’s driverless car project, which already performed real-life testing

on street in multiple cities around the world.

http://en.wikipedia.org/wiki/Google_driverless_car

 The world’s largest online retailer, Amazon, is using automated rovers

that roam around their warehouse, automatically picking up merchandise

from the shelf to fill customer order.

 The Roomba automated vacuum machine from iRobot, which can roam

around your house by itself to vacuum and clean the floor.

While the Mars Rover and Google’s driverless car projects are research project

that involve 100 of millions dollars in funding, which is out of reach by the

average developer. The Roomba automated vacuum robot from iRobot and

other automated vacuuming robots are consumer product that cost just a few

hundred dollars, which most of the household in developed country can easily

afford and purchase. For just a few hundred dollars, consumer is able to

purchase one of these intelligent vacuum robot with the following:

 Automatically vacuum and clean the floor in a designated area.

 Automatically perform designed vacuum tasks based on

pre-programmed schedule.

 Avoid obstacle as it roams around to perform its duty.

 When battery is low, it’s able to automatically return to its charging

station to recharge and continue to perform its task after charging.

Imagine this: Perhaps, within 5 to 10 years or sometime in the near future, we

can sent driverless car to pick up our friends and love one from the airport.

86Duino
www.86duino.com

-3-

2. Motion and Control

In order for a robotic rover (Robot) to move around, it needs wheels and motor.

For the example in this chapter, we are putting together a simple Robot using

geared DC motor and 65mm diameter wheels, as shown in figure-1. The

working voltage range for the DC motor is from 0 ~ 6V. At 0 volt, the Robot

does not move. As the voltage to the motor gradually increases, and reaching

the 1 V range, the motor starts to turn slowly. As the input voltage increases,

the motor turn faster and faster and draw approximately 100 ~ 500mA of current

per motor, which can draw up to 1A of current between the two motors combine.

The L293D dual H-bridge motor driver IC is able to provide sufficient current to

support the motors for the project.

Figure-1: Small geared motor assembly with wheel

As shown in figure-2, three signal wires from the 86Duino EduCake are needed

to control each motor. One for PWM signal to control speed and the other two to

control direction of movement. Together, six signal wires are needed to

control the two motors for the Robot. As shown in figure-2, signal wires 1, 2

and 3 are used to control the first motor and wires 4, 5 and 6 are used to control

the second motor, using available signal output from the EduCake. To control

motor speed, we can use the analogWrite () function. Using analogWrite()

function to control motor with PWM is covered in the earlier chapter and will

not be covered here.

86Duino
www.86duino.com

-4-

Please note, the max voltage to the motor is 6V. When using DC to DC

converter or voltage source different from the four 1.5V battery connected in

series, as shown in figure-2, make sure the voltage is within the 6V range, to

avoid damage. While the motor can tolerate little higher voltage, such as 7V,

applying high voltage to the motor continuously for prolong period of time will

damage and shorten the motor’s useful life.

Figure-2: Motor control circuit

Sample codes to control the motors:

86Duino
www.86duino.com

-5-

To accurately detect the robot’s movement, we will use encoder with

encoder-disk, as shown in figure-3.

int M1a=6,M1b=7; // Control 1st motor’s direction
int ENa=5; // control 1st motor’s speed
int M2a=9,M2b=8; // control 2nd motor’s direction
int ENb=10; // control 2nd motor’s speed
void setup()
{
 pinMode(M1a,OUTPUT);

 pinMode(M1b,OUTPUT);

 pinMode(ENa,OUTPUT);

 pinMode(M2a,OUTPUT);

 pinMode(M2b,OUTPUT);

 pinMode(ENb,OUTPUT);

}

void loop()

{

 int a;

 for(a = 0; a <= 255; a+=5)

 {

 digitalWrite(M1a,HIGH);

 digitalWrite(M1b, LOW);

 analogWrite(ENa, a); // gradually increase 1st motor’s speed

 delay(20);

 }

 digitalWrite(ENa, LOW); // Stop

}

86Duino
www.86duino.com

-6-

Figure-3: Encoder

Figure-4: Encoder circuit

When working with robotics vehicle, the encoder disk is typically attached to

the wheels, centering on the wheel’s axle. The encoder, using optical sensor, is

position in a location where the light passes through the slots on encoder disk.

As the encoder disk turn, light source reaches the encoder optical sensor in

series of pulses, which can be used to determine wheel movement. By

detecting the number of light pulse and time delay between each pulse, it’s

possible to calculate speed and distance.

86Duino
www.86duino.com

-7-

As the Robot moves around, the attached encoder disks will move in relatively

high speed and is not practical to read sensor input from the encoder using the

digitalRead() function in a loop. In addition to poor performance, the

digitalRead() function may not be able to yield accurate result. For this

example, the pulseIn() function is a far better option.

As the encoder disk turns, light passes through the open slot on the disk and hit

the optical sensor, which trigger the light detected condition. As the encoder

disk turn and the solid portion of the wheel passes over the sensor, blocking

light source from the sensor, a no-light-detected condition is created. Using

the pulseIn() function, we can detect the length of time needed for the encoder

disk to move from one open slot to the next. There are 20 open slot and 20

blocked position on the encoder disk, by multiplying the transition time between

light-detected and no-light condition, by 40, we can calculate the time needed

for the encoder disk to complete on full turn. Based on the wheels’ diameter,

6.5cm, we can calculate the travel distance by multiplying the Robot’s wheel

radius and the time it takes for the wheel to complete one full turn, using the

following formula to calculate the wheel radius:

 Travel distance of one full turn = 6.5cm * 3.14 = 20.41 cm

By dividing the total travel distance when the wheel complete a full turn by the

number of open slots on the encoder disk, we get the travel distance per open

slot. Since there are 20 open slot on the encoder disk, we can calculate the travel

distance relative to the encoder disk movement from one open slot to the next by

dividing the travel distance for one full turn by 20, as follow:

Travel distance between each open slot = 20.41cm / 20 = 1.02cm

In addition to the above calculation, we need to take into account other factors

that can affect the accuracy of the calculated outcome, such as the wheels may

skid on slippery surface, weight from the robot may alter the wheel diameter

which affect the actual travel distance, and etc.

We can improve the accuracy by using variety of methods. For example, the

encoder mechanism can be placed in a different location, such as to detect and

measure motor movement at the point prior to the gear reduction mechanism.

86Duino
www.86duino.com

-8-

Assuming that we are working with a geared motor with 150:1 ratio of gear

reduction, by attaching the encoder to detect motor movement prior to the gear

reduction mechanism, the accuracy is increased by 150 times. At the same

time, this increased accuracy also generate 150 times additional interrupt events.

Instead of 20 interrupt events per revolution, the system now trigger 3000

interrupt events per revolution, which the processor must respond to. It takes

CPU time and processing resources to handle each of these interrupt events,

which may cause the system not able to process other required computing tasks

in a timely manner.

It’s best to select a balanced approach that delivers acceptable level of accuracy

with minimal impact to the system’s performance.

Let’s take a look at the interrupt handling code:

volatile int counter ;
unsigned long oldtime;

void setup()
{
 pinMode(pin, OUTPUT);
 attachInterrupt(2, RPM, RISING);// Interrupt triggered when
 // signal change: LOW to HIGH
 Serial.begin(9600);
 oldtime= millis(); //current time
 counter =0;
}

void loop()
{
 long rpm;
 if (counter >= 20) // counter to detect completion of 1 turn
 {
 rpm = millis() - oldtime; // elapsed time
 rpm = 60 * 1000 / rpm; // calculate speed
 oldtime = millis(); // reset new time
 counter = 0; // reset counter
 Serial.println(rpm, DEC);
 }
}

void RPM ()
{
 // when an interrupt event occur, increment counter by 1
 // Keep thing simple to minimize interrupt handling loading
 // and avoid affecting other part of the program
 // As shown in figure-5, interrupt event is triggered when
 // encoder signal transition from LOW to HIGH
 // when interrupt event is triggered, increase counter by 1.
 //
counter ++;
}

86Duino
www.86duino.com

-9-

Based on the time needed for the encoder disk to complete one full revolution

and total traveling time, we can put together mathematic formula to calculate the

speed and distance. In the above code, the calculation is based on millisecond,

where there are 60 seconds to one minute and 1 second is equivalent to 1000ms

(millisecond). When the wheel is moving in high speed, calculation based on

the millisecond resolution may not provide sufficient accuracy for certain

application. If this is the case, you can consider using microsecond as the

calculation parameter, which increase accuracy by factor of 1000.

The Robot we are working with is equipped with a 70 RPM geared motor,

which can rotate 70 revolution within one minute, which rounded to

approximately 1 revolution per second. With 20 open slot on the encoder disk

to trigger 20 interrupt event per revolution, the motor is capable to generate an

interrupt event every 50ms. For our purpose, the millisecond calculation

parameter provides sufficient accuracy.

Figure-5: Encoder signal transition

With the wheel’s diameter (65mm) and rotation speed, we can calculate how

far the Robot can travel in one minute, and how long it takes for the Robot to

travel one meter or whatever distance needed to plan the path for the Robot

to travel. The hardware used in this example is able to deliver limited level

of accuracy. To improve accuracy, we can use a higher resolution rotary

encoder and a faster CPU, which also increase the cost.

86Duino
www.86duino.com

-10-

3. Cargo Box Control

To use the Robot to transport things from one location to another, a cargo box is

needed. To avoid things from falling off or removed by others during transport,

an enclosed cargo box is needed.

There are different options to keep the enclosed cargo box close and secure

during transport, such as using an electromagnetic mechanism, servo and others.

For this example, a servo is used to control the cargo box’s opening and closing,

as shown in figure-6.

Figure-6: Servo controlled cargo box

Starting in the close position as in figure-6, turn the servo arm pushes and open

the cover, as shown in figure-7. Let’s assume when PWM 1000us is applied to

the Servo, the cargo box is in the close position, and when PWM 1750us is

applied to the Servo the cargo box cover is fully open, we can use a simple

program to control the opening and closing of the cargo box based on these

parameters. In addition, it’s possible to use RFID, remote control, IR,

Bluetooth and other resources to trigger the opening and closing of the cargo

box’s door. For example, with the cargo box, it’s possible to put together a

Robot to deliver lunch box to co-workers in the office, as follow:

86Duino
www.86duino.com

-11-

 An RFID tag is attached to each co-worker’s desktop, which function as

a check point for the Robot to stop for approximately 5 to 10 seconds,

for the person at the desk to respond.

 Each co-worker is wearing an RFID tag on a wristband, as the person at

the desk reach their hands toward the Robot, the RFID tag triggers the

cargo box to open and push out a lunch box to the person at the desk.

Figure-7: Cargo box with servo control

Here is a listing of code to control the servo:

86Duino
www.86duino.com

-12-

The above codes can easily be tested using a button interface. When the button

is pushed, the cargo box open. When the button is released, the cargo box

close.

As an alternative to using servo to control the cargo box’s opening and closing,

sliding track with stepper motor can be used to yield better result. However, it

will increase the cost and complexity. For our example, the servo option is

sufficient.

Before continuing, let’s talk briefly about some good practices for programming.

Instead of writing a long program within a single module, which may result in

100s even 1000s lines of codes that are difficult to trace and debug, it’s best to

write code in small chunk, separating the codes in multiple modules and call

each of these modules from the main program. By doing this, the code is

easier to trace and debug. In addition, each of these module can easily be reuse

in other projects. Since these codes has been validated and tested as part of an

existing program, you can save lots of time and efforts, when developing new

program that can take advantage of these existing modules.

#include <Servo.h>
Servo myservo; // Creating the servo object
void setup()
{
 pinMode(2,INPUT); // setup digital pin 2 as input from a
 // button
 myservo.attach(3); // attach servo object to digital pin 3
}
void loop()
{
 int b=digitalRead(2);

 if (b==HIGH) // 代表按鈕被按下
 myservo. writeMicroseconds(1750); // open cargo box
 else
 myservo. writeMicroseconds(1000); // close cargo box
}

86Duino
www.86duino.com

-13-

4. Infrared

In order for the Robot to travel along a track, marked by tape, we need to use

sensor to detect the surrounding. While image recognition provide good result,

it requires lots of processing resources and high speed imagine capture camera,

which is complex and costly. An alternative low cost and simple approach is

to use infrared sensor, as shown in figure-8.

Figure-8: Infrared sensor module

Figure-9: Infrared sensor module circuit

As shown in figure-9 above, the infrared sensor module has 3 wires, Vcc, Gnd and

Sng.

This type of infrared sensor module has an emitter that emits a low intensity infrared

86Duino
www.86duino.com

-14-

signal and bounced back after hitting a surface. Then, the receiver that is part of the

infrared module, detect and sense the infrared signals that are bouncing back. In

general, surface with different color can reflect and bounce high level of infrared back

to the sensor module, except for black color, which absorb majority of the infrared,

which can be used to detect whether the infrared beam is reflecting back from a black

or non-black surface.

Today, in many Robot competition that involves having the robot following along a

marked path in black color, it’s common to see infrared sensors being used in these

competitions. To avoid interference, the infrared sensor module is typically placed in

a position that is close to the traveling surface, approximately 1~2 mm away.

Infrared sensor module’s usage is also simple, which involve 3 wires: VCC, GND

and SNG. SNG is the signal output from the sensor, when black color surface is

encountered the output is 0. When the sensor encounters surface with color other

than black, the output is 1. Using the digitalRead() function to read the output from

an infrared sensor, we can easily determine whether the surface it encounters is black

or non-black.

In the situation where paths with different color marking are used to make the

competition more interesting, it requires color sensor module and is far more

complicated, which is not within the scope for us to cover in this chapter.

It’s common to see infrared sensor module with group of 3, 5 or 7 sensors, positioned

side by side in a row with even space between them. This type of implementation is

best for detecting and following a marked path, as demonstrated in figure-10.

86Duino
www.86duino.com

-15-

Figure-10: Different infrared sensor module condition in line-following application

In figure-10, the simple terrain along with the placement of sensor modules, each with

group of 3 infrared sensors, in different position along the path to demonstrate how to

use these sensors to detect and follow the marked path.

For a simple path, a group of 3 infrared sensors is sufficient to deliver good result.

For complex path with lots of un-uniform turn and curve, more than 3 sensors are

needed to deliver acceptable result.

The path in figure-10 is marked by a 1.5cm wide black tape. Within the group of 3

infrared sensors, the space between each sensors is 1.2cm. As shown by the sensors

at the 1st position in figure-10, when the sensor in the middle is position at the center

of the black tape and send out a digital LOW signal, both of the sensors to the left and

right are detecting the non-black surface and send out digital HIGH signal. The

combined signals from all 3 sensors indicate the Robot is centered on the marked path

and should maintain the same traveling direction.

As indicate by the group of sensors at the 2nd location in figure-10, the left and middle

sensors are above the black tape and both send out a LOW signal. The sensor to the

right are above the non-black surface and send out a HIGH signal. This condition

indicates the Robot is traveling too far to the right. The formula need to issue

command for the Robot to adjust its traveling direction slightly to the left, to move the

Robot toward the center of the marked path.

86Duino
www.86duino.com

-16-

When both of the left and right motors are moving at the same speed, the robotics

rover travel in a straight line. To adjust the robotics rover’s traveling direction, to

the left or right, you can use the analogWrite() function to control the left and right

motors to move at different speed. When the left motor is moving faster than the

right one, the rover turns to the right. When the right motor is moving faster than the

left one, the rover turns to the left. To make a sharp turn quickly, where it cannot be

accomplish by controlling the left and right motor to move at different speed, such as

a curve that is less than 90 degree, you can achieve this by controlling the left and

right motors to move at opposite direction. When attempting to control the rover to

make a sharp turn quickly, it may be necessary to reduce the robot’s traveling speed

just before the turn, to prevent the robot to roll-over as the result of traveling too fast

while making a sharp turn.

The terrain in figure-10 is a simple one, without any sharp turn. We can use the simple

method to adjust the robotics rover’s traveling direction, by controlling the left and

right motors to move at different speed.

In figure-10, the sensors at the 3rd location is completely separated from the marked

path. When all three sensors is detecting the black tape on the marked path and send

out digital LOW signal, which indicates the robot is traveling within the marked path,

you can let the robot continue to travel at whichever direction it’s moving toward.

In the case as shown for the sensors at the 3rd location, all three sensors is not

detecting the marked path where the robotics rover does not have any point of

reference that can be used to figure out its current location relative to where the

marked path. Allowing the robot to travel toward a random direction may move the

robot further away from where it needs to be. In scenario like this, we can

implement additional resource such as Bluetooth, by placing a Bluetooth transmitter

close to the center of the marked path and Bluetooth receiver on the robotics rover.

As the robotics rover move further away from the marked path, the Bluetooth signal

become weaker, which can be used to indicate whether the robot is moving in the

correct direction, back toward the marked path. Adding Bluetooth involves additional

cost and increased complexity which is not within this chapter’s objective. There will

be more coverage about Bluetooth in the later chapter.

The sensors at the 4th location is the opposite from the sensors at the 2nd location,

86Duino
www.86duino.com

-17-

where the middle and right sensors are above the marked path and both send out

digital LOW signal. The left sensor is above the white surface and send out digital

HIGH signal, which indicates the robotics rover is traveling too far to the left and

need to adjust its heading to the right to continue and follow the marked path.

Based on the signal from the 3 infrared sensors, where each sensor may send digital

LOW or HIGH condition, there are 8 different possible combination of signals from

the 3 sensors.

Here is a listing of codes to handle each of these conditions:

int Left_IR=5,Middle_IR=7,Right_IR=6;
int spd_a=255, spd_b=255; // variable to control L & R motor speed
 // L = Left, R = Right
void setup()
{
 pinMode(Left_IR,INPUT);
 pinMode(Middle_IR,INPUT);
 pinMode(Right_IR,INPUT);
}
void loop()
{
 int L,M,R;
 int pos;
 L=digitalRead(Left_IR);
 M=digitalRead(Middle_IR);
 R=digitalRead(Right_IR);
 pos=L*4+M*2+R;
 switch (pos)
 {
 case 0://000 all sensors on marked path, turn L (ok to turn R)
 turn_left();
 break;
 case 1://001 traveling slightly to the right, turn L
 turn_left();
 break;
 case 2:// 010
 // Since the black tape used to mark the path is 1.5cm
 // and the space between each infrared sensors is 1.2 cm
 // It’s not possible for this condition to happen.
 //
 // Under other situation, this condition can happen
 // and need to act accordingly
 break;
 case 2:// 010
 // Since the black tape used to mark the path is 1.5cm
 // and the space between each infrared sensors is 1.2 cm
 // It’s not possible for this condition to happen.
 //
 // Under other situation, this condition can happen
 // and need to act accordingly
 break;
case 2:// 010
 // Since the black tape used to mark the path is 1.5cm

86Duino
www.86duino.com

-18-

 // and the space between each infrared sensors is 1.2 cm
 // It’s not possible for this condition to happen.
 //
 // Under other situation, this condition can happen
 // and need to act accordingly
 break;

 case 3: //011，similar to case1, with both middle and right
 // sensors off the marked path, the robot further
 // to the right in comparison to case1
 // and need to call the turn_left() function twice
 // to adjust the heading.
 turn_left();
 turn_left();

// Instead of calling the turn_left() function twice,
// we can use a different function or include a variable to
// increase the length of time for the robot to move toward the
// left.
//

 break;

 case 4://100， traveling slightly to the L, turn R
 turn_right();
 break;

 case 5://101，Robot is following the marked path
 move_forward()
 break;

case 6://110，traveling far to the L, adjust heading to the R
 turn_right();
 turn_right();
 break;
 case 7:// 111 marked path not detected
 // continue in the same heading
 move_forward();
 break;
 }
 delay(100);
}

void move_forward()
{
 digitalWrite(M1a,HIGH);
 digitalWrite(M1b, LOW);
 analogWrite(ENa, spd_a); //control L motor speed
 digitalWrite(M2a,HIGH);
 digitalWrite(M2b, LOW);
 analogWrite(ENb, spd_b); //control R motor speed
}

void turn_right()
{
 digitalWrite(M1a,HIGH);
 digitalWrite(M1b, LOW);
 analogWrite(ENa, spd_a); //control L motor speed
 digitalWrite(M2a,HIGH);
 digitalWrite(M2b, LOW);

analogWrite(ENb, spd_b-100); //decrease R motor speed to turn R
}

86Duino
www.86duino.com

-19-

There are many other situation where infrared sensor is useful, such as detecting the

surface edge to avoid falling off the platform, such as in the scenario where the

robotics rover move around near a stair without a fence to protect it from falling off

the stairway, infrared sensors can be used to detect when the robot is moving near the

edge of the stair and change the traveling direction to avoid falling.

There are infrared sensor designed to sensor the distance from the reflecting surface,

such as the Sharp infrared sensor shown in figure-11, which can be used to measure

distance from 10cm to 80cm.

By placing an infrared sensor in the forward facing position pointing downward to

detect the distance to the surface in front of the robot as it travel, when the robot is

void turn_left()
{
 digitalWrite(M1a,HIGH);
 digitalWrite(M1b, LOW);
 analogWrite(ENa, spd_a-100); //decrease L motor speed to turn L
 digitalWrite(M2a,HIGH);
 digitalWrite(M2b, LOW);
 analogWrite(ENb, spd_b); //control R motor speed
}

void turn_left_rotate() // Turn left without moving forward
{
 digitalWrite(M1a, LOW); // These two lines of code configure

digitalWrite(M1b, HIGH); // the L & R motors to move in
 // different direction

 analogWrite(ENa, spd_a); // control left motor speed
 digitalWrite(M2a,HIGH);
 digitalWrite(M2b, LOW);
 analogWrite(ENb, spd_b); // control right motor speed
}

void move_back() // move backward
{
 digitalWrite(M1a,LOW);
 digitalWrite(M1b, HIGH);
 analogWrite(ENa, spd_a); //control L motor speed
 digitalWrite(M2a, LOW);
 digitalWrite(M2b, HIGH);
 analogWrite(ENb, spd_b); //control R motor speed
}

86Duino
www.86duino.com

-20-

traveling close to the edge of a stair, as the infrared beam passed the edge of the stair,

the distance to the surface will dramatically increase, which can be used as a signal to

indicate the robot is moving toward the edge of the traveling surface and

programmatically adjust the heading to avoid falling off the edge.

Figure-11: Infrared sensor to measure distance

Figure-12: Circuit showing infrared sensor attaching to EduCake

Codes to read data from infrared sensors to measure distance:

86Duino
www.86duino.com

-21-

Sensor value, in voltage, from the distance measuring infrared sensor relative to the

actual distance is not linear where the actual result is calculated using the following

formula:

 Sensor data = (6762.0/((float)temp – 9.0)) – 4.0;

// GP2D12 distance measuring infrared sensor
void setup()
{
 Serial.begin(9600);
}
void loop()
{
 int IR;
 IR = read_IR (3); // Attach to analog P3
 Serial.print("IR distance = ");
 Serial.print(IR);
 Serial.println(" cm");
 delay(500); //delay 500ms before the next reading
}

float read_IR(byte pin)
{
 int tmp;
 tmp = analogRead(pin);
 if (tmp < 3) return -1; // when less than 3, value is improper
 return (6762.0 /((float)tmp - 9.0)) - 4.0;
}

void move_back() // move backward
{
 digitalWrite(M1a,LOW);
 digitalWrite(M1b, HIGH);
 analogWrite(ENa, spd_a); //control L motor speed
 digitalWrite(M2a, LOW);
 digitalWrite(M2b, HIGH);
 analogWrite(ENb, spd_b); //control R motor speed
}

86Duino
www.86duino.com

-22-

5. Ultrasound

In the previous section, we talked about using infrared sensor to measure

distance. While infrared sensor is low cost and deliver acceptable accuracy in

measuring, it can only measure short distance. In the case of the Sharp sensor

used in the previous section, the effective measurement range is from 10cm to

80cm. Ultrasound sensor is used to measure longer distance.

To measure distance, an ultrasound sensor emit high frequency sound waves in

the 40 KHz range, which is above the range human can hear, where these sound

waves will reflect back to the sensor from the surface of object they hit.

Distance measurement can be calculate based on the time it takes for the sound

waves to reflect back to the sensor, using the speed of sound as an additional

parameter.

Figure-13: Circuit to attach ultrasound sensor module to EduCake

Here is a listing of codes to measure distance using ultrasound sensor:

86Duino
www.86duino.com

-23-

The simple codes in the listing above can be used to measure distance ranging

from 1cm to 500cm. Comparing to infrared, ultrasound sensor is more

susceptible to interference. There are different conditions which can cause the

ultrasound sensor to lose its accurate measurement ability, such as:

 When the sound wave is reaching a soft surface such as sponge, the sound

wave may be absorbed by the surface and does not reflect back to the

sensor and cause a time-out condition for the pulseIn() function.

 When the sound wave fails to reach a 90 degree angle surface, the sound

wave may bounce to another surface before reflecting back to the sensor.

 When the sound wave is traveling too far and become too weak to reflect

back to the sensor.

While there are ultrasound sensor capable to deliver accurate measure for longer

distance, most of the sensor for the DIY market are limited to the 1cm to 500cm

range.

For the ultrasound sensor we are using, the effective range is approximately 1cm

to 220cm.

 int sonic_echo =4; // attach to digital pin #4
 int sonic_trig=5; // attach to digital pin #5

 void setup()
 {
 Serial.begin(9600);
 pinMode(sonic_echo, INPUT);
 pinMode(sonic_trig, OUTPUT);
 }

 void loop()
 {
 digitalWrite(sonic_trig, LOW);
 delayMicroseconds(2);

digitalWrite(sonic_trig, HIGH); // set digital pin HIGH
 // for 10μs
delayMicroseconds(10); // delay 10us for the module to
 // prepare & emit ultrasound

digitalWrite(sonic_trig, LOW); // after delay
 // set digital pin to LOW
// wait for reflected sound wave and calculate the time

 int distance = pulseIn(sonic_echo, HIGH);
 distance= distance/58; // convert distance to CM
 Serial.println(distance);
 delay(300);
 }

86Duino
www.86duino.com

-24-

6. Introduction to Path Planning for Robotic Vacuum

This section talks about the challenges associate with path planning for robotic

vacuum robots. Based on our observation, many robotic vacuum robots are

designed in such a way that the robot attempt to cover all of the accessible floor

space in a room and move on to the next room until all of the rooms in the house

are covered. There are broad range of approaches to accomplish these objectives,

ranging from simple to complex system.

Many low-cost robotics vacuum machines uses a simple approach where

multiple mechanical sensors are attached to the robot’s bumper. The robot

would travel along a reference path, which may be randomly selected, until it

encounter obstacle along the path then change its travel direction randomly.

This approach generally is not able to cover all of the floor space and rarely able

to do a good job automatically without some human intervention.

To maximize the robot’s ability to cover all floor space within a room, it’s

necessary to implement computing algorithm to move the robot around in a Z

pattern or circulating a room’s parameter while gradually reducing the

circulating diameter and move toward the center of the room, as indicated by the

drawing in figure-16. In addition to the selected travel pattern, there are more

complex computation & algorithm involve to create a function robotic vacuum

with the ability to cover a living quarter with multiple rooms, such as the

apartment floor plan in figure-14.

86Duino
www.86duino.com

-25-

Figure-14: Floor plan for a multi rooms apartment

In order for a robotic vacuum robot to efficiently clean all of the rooms in the

floor plan, as shown in figure-14, the robot’s wheels need to be equipped with

encoder and other sensors to detect and record the terrain it travels through, to

create a virtual map in its memory. Using the SLAM (Simultaneous

Localization and Mapping) approach, along with the associated sensor and

algorithm, the robot establish multiple coordinates on the virtual map and use

these coordinates to identify obstacle, path that link one room to another and

separate the floor plan into different zones where it covers each of these zones

individually and move on to the next zone after completing the current one until

the whole apartment or house is covered, as shown in figure-15.

86Duino
www.86duino.com

-26-

Figure-15: Floor plan separated into zones

As shown in figure-15, the floor plan is separated into multiple zones where the

door-frame or entry point to each room are the coordinates used to separate each

of these zones. Area that is not to be clean (or not accessible) by the robot is also

marked, such as the bath room.

86Duino
www.86duino.com

-27-

Figure-16: Two movement algorithm targeting open area in the kitchen

With the virtual map and zones in its memory, the robots can efficiently move

around and clean all of the floor, one zone at a time. To insure maximum

efficiency and covering all of the floor space thoroughly, some robotic vacuum

robot uses an algorithm to control the robot to move in a Z pattern or circulating

around the covered area and gradually reducing the circulating diameter,

moving toward the center.

When using the Z pattern algorithm, the robot initially move along one of the

zone’s outer edge until it encounters an obstacle, or reaching a coordinate that

86Duino
www.86duino.com

-28-

identify the outer limit for the current zone, the robot change the travel direction

by 175 degree to create the Z travel pattern (changing travel direction by 180

degree would control the robot to travel in the exact opposite direction it just

came from). With the Z movement pattern, some of the floor space is not

covered.

To improve floor space coverage, the robot can be control to change it travel

direction by 90 degree, move a short distance that is equal to the robot’s width

and then change the travel direction by 90 degree and travel back to the exact

direction it came from in parallel to the path already cleaned. While this may

seem like a better approach, it require highly accurate encoder & sensor, with

increased cost and complexity, to insure the robot’s movement is just right.

Figure-17: More complex coverage

86Duino
www.86duino.com

-29-

In situation where there are large obstacle in a room, such as the bed in a bedroom, as

shown in figure-17, it’s a bit more complex to fully cover the room. The robot needs

to adopt an algorithm to separate the room into different zones and cover each of these

zones separately.

7. Summary

By combining different type of sensors and control mechanism, a robotics rover

can be adopt to serve many useful purpose. The only limit is our imagination.

In the later chapters, we will talk about other implementation tips to help

accomplish other useful tasks.

