
86Duino
www.86duino.com

-1-

Intro to App Inventor and Application

with Bluetooth Connectivity

1. Introduction to the App Inventor Development

Environment

App Inventor is a web-based online graphical mobile application

development environment for Android devices, where you can create an

application by simply drag and connect a series of function blocks.

To develop application using App Inventor, you can use one of the

support browsers pointing to the following URL:

- http://ai2.appiventor.mit.edu/

You need a Google account to use App Inventor. After login to the

system using a Google ID, from the App Inventor Designer menu, you can

click on Start new project to start a new program, as shown below:

Enter project name and click OK to continue.

86Duino
www.86duino.com

-2-

At this point, the App Inventor Designer is showing 4 separate sections,

Palette, Viewer, Components and Properties.

http://appinventor.mit.edu/explore/designer-blocks.html

 Palette: This section contains different components which you can

drag onto the Viewer to add them to your application. This is

a familiar feature to the .NET developer.

 Viewer: This section provides a preview screen for your application

where you can drag and drop components from the Palette

section onto the screen and arrange the components to see

how your app will look like.

 Components: This section lists all of the components that are added to

your application. By clicking on a component, the selected

component’s properties are shown on the Properties

section.

 Properties: This section displays all of the properties associated with a

selected component and provides the interface for you to

edit and change the setting or value for each of these

properties.

86Duino
www.86duino.com

-3-

2. First sample app

In this first exercise, we will go through the steps to create a simple

application where you can click a button to change display character.

From the App Inventor menu, click on Start new project to create a new

project and enter ClickMe as the project name, as shown below:

After clicking on OK to create the app, the App Inventory design and

layout screen is shown. This is where you can add components and

change the layout for the app.

We need a button for the app. From the Palette section, click and drag

the Button component onto the Viewer section to add the button control

to the project as Button1, as shown below:

86Duino
www.86duino.com

-4-

From the Components section, click and select Button1. At this point,

the Properties section to the right is associated with Button1. From the

Properties section, change FontSize to 20 and Text property for Button1

to “Click Me”, as shown below:

You can also change the button’s width and height from the

Properties pane. Click on the Width property and select the Fill parent

option, as shown below:

Click on the Height property select the pixels option and enter 50 pixels

for button height, as shown below:

From the Palette section, click and drag the Label component onto the

Viewer section to add the label control to the project as Label1. From the

Components section, click and select Label1. From the Properties section,

clear the entry in the Text properties, set the Width to fill parent and the

Height to 50 pixels, as shown below:

86Duino
www.86duino.com

-5-

In the previous steps, we put together the app’s layout in Designer

mode and have not implemented any program logic. App Inventor has 2

different view modes, Designer and Blocks modes. In Designer mode, the

Viewer section provides a graphical interface to view and design the

app’s layout. In Blocks mode, the Viewer section provides a graphical

interface where you can construct the app’s logic and function by

dragging different component from the Blocks section.

There are multiple group of controls with different functions and

features. The Control group provides different conditional flow control

(If-then, Do-While, for-each &etc.) logic blocks, as shown below:

86Duino
www.86duino.com

-6-

The Logic group provides the following:

The Math group provides the following math function blocks:

The Text group provides the following text and string handling

components:

86Duino
www.86duino.com

-7-

The Variables group provides function blocks that work with different

variables needed for the app, as shown below:

In the following section, we will go through the steps to add program

logic to the app from the Blocks mode, adding program function blocks

to the ClickMe app:

 From the Screen1\Button1 component group, click on the “when

Button1.Click” component block and place it on the Viewer section, as

shown below:

86Duino
www.86duino.com

-8-

 From the Screen1\Label1 component group, click on the “set

Label1.Text to” component block and place it on the Viewer section, as

shown below:

 From the Built-in\Text component group, click on the text string

component block and place it on the Viewer section, as shown below:

 Click on the empty box between the double-quotes on the text string

component and enter “Hello World!”, as shown below:

86Duino
www.86duino.com

-9-

Each of the program function block has different shape for the

connection and receptor, used to control program flow. When one of

these function blocks is incorrectly placed, warning and error are shown

on the Viewer section, such as the following:

The “is empty” function block is attached as part of the program flow

and cause the warning message shown next to the yellow triangle. To

remove the “is empty” function block, you can click and drag the

component to the trash can at the lower right corner of the screen. Or,

simply click to select the component and press the delete key.

With only one button and program logic for a single click event, we

cannot demonstrate interaction with the program effectively. Let’s add

a second button to clear Label1 text content.

From Designer mode, drag a Button control from the Palette section to

the Viewer and perform the following:

 Change the FontSize property to 20

86Duino
www.86duino.com

-10-

 Change the Text property to Clear

 Change the Width property to Fill parent

 Change the Height property to 50 pixels

From the Blocks mode, add the following function blocks (as shown in

figure below):

 “When Button2.click” from the Screen1\Button12 component

group

 “Set Label1.Text” from the Screen1\Label1 component group

 Text string component from the Built-in\Text component group

At this point, we have all of the intended function for the app. Before

building and testing the app, we need to establish connectivity to a device

or an emulator.

For this exercise, we will use a real device. To use a real device, we

need to install the “MIT AI2 Companion” app from the app store.

Install and launch the app on the target device. After the MIT AI2

Companion app is launched, you have the option to enter a six digit code

or use the scan QR code option to connect to App Inventor, as shown

below:

86Duino
www.86duino.com

-11-

From the App Inventor’s Connect menu, click on AI Companion to

bring up the following screen:

From the target device, you can enter the six digit code, or scan the QR

code to establish connectivity to the App Inventor. Once connected, the

app will display on the device, as shown below:

With connection to the App Inventor established, the changes you

make to the app will reflect on the device in real time.

While the MIT AI2 Companion app can connect to App Inventor for

testing and debugging, the app is not installed to the device. Once

disconnected, the app will not remain on the device.

Let’s go through the following steps to install the app to the device:

 From the App Inventor Build menu, click on App (provide QR code

for .apk) to build the app. App Inventor shows the following progress as

it build the app.

86Duino
www.86duino.com

-12-

 After the build is done, a QR code is provided for the MIT AI2

Companion to install the app, as shown below:

 After scanning the QR code using MIT AI2 Companion, the following

screen is shown on the device, asking for permission to install the app.

Another option to install the app is to compile and download the .apk

installation file, download and copy the file to the target device’s local

storage and install the app manually:

86Duino
www.86duino.com

-13-

 From the App Inventor Build menu, and select the “App (save .apk to

my computer)” option to build the app.

 After the build process is completed, App Inventor provides the

option to download the generated .apk file, as shown below:

86Duino
www.86duino.com

-14-

3. Second sample app

In this second exercise, let’s create an app that connect to the

EduCake using Bluetooth.

From App Inventory Project menu, click on Start new project, as shown

below, to bring up the new project wizard:

Enter “Bluetooth_Connect” as project name and click OK to continue.

From the Palette section, select and drag the ListPicker component to

the Viewer section, as shown below:

Select ListPicker1 in the Components section and change the

associated properties as follow:

86Duino
www.86duino.com

-15-

 Change the Text property to “Select Bluetooth Device” and

FontSize to 20.

 Change the Width property to “Fill parent” and Height to 50 pixels

The screen in the Viewer section should looks similar to the following:

The ListPicker component provide similar function as Button that

function like menu options, where you can click on one of the selection to

get to the specified option, such as the following:

There are different methods to configure the ListPicker. One of the

method is the ElementsFromString Properties, as shown below:

The other method is programmatically within the app which provide

more flexibility, as shown below:

Here is another method:

86Duino
www.86duino.com

-16-

Let’s continue with the app. From the Connectivity component group

in the Palette section, select and drag the BluetoothClient component to

the Viewer.

Since the BluetoothClient component does not have user interface,

it’s a non-visible component and not shown on the Viewer. You can

see the BluetoothClient1 component is added in the Components section,

as shown below:

From the User Interface component group in the Palette section, select

and drag a Button control onto the Viewer and change the button

properties as follow:

 Change the Text property to “Click Me” and FontSize to 20

 Change the Width property to “Fill parent” and Height to 50 pixels

 Change the Visible property to hidden

At this point, the App Inventor screen should looks like the following:

86Duino
www.86duino.com

-17-

Next, click on the Blocks button (from the App Inventor menu) to switch

to Blocks mode and add programming logic to the app.

From the Screen1\ListPicker1 component group, select and add the

following components:

 “when ListPicker1.BeforePicking”

 “set ListPicker1.Elements”

From the Screen1\BluetooothClient1 component group, select and add

the “BluetoothClient1.AddressAndNames” component, as shown

below:

86Duino
www.86duino.com

-18-

The above group of components provide the function to retrieve the

list Bluetooth devices paired with the Android device.

Continue and add the “when ListPicker1.AfterPicking” component

from the Screen1\ListPicker1 component group to the Viewer section:

The ListPicker1.AfterPicking component is an event handler after an

item is selected.

From the Built-in\Control group, select and add the “If then”

component, a conditional handler, to the Viewer section:

86Duino
www.86duino.com

-19-

Next, select and add the “call BluetoothClient1.Connect address” and

“ListPicker1.Selection” components and link to the “if” condition:

Next, add “Button1.Visible” component (from the Screen1\Button1

component group) and “true” component (from the Built-in\Logic

component group) and link to the “then” condition:

The 2nd group of components, highlighted within the red rectangular

frame, is part of an event handler to change the “Click Me” button

(Button1) from hidden to visible after a Bluetooth device is selected from

the list.

Next, add the “Button1.Click” component (event handler for the

“Click Me” button) to the app:

86Duino
www.86duino.com

-20-

Add the “BluetoothClient1.SendText” and the blank text entry

component to the app:

From the Viewer section, click on the black text entry component and

enter the character “a”:

The last group of function block provide the program logic to send the

text character “a”, via the BluetoothClient1 connection to the

connected Bluetooth device.

86Duino
www.86duino.com

-21-

Next, let’s take a look at the Bluetooth module used with the EduCake.

For this exercise, we are using one of the popular Bluetooth module,

HC-06, as shown below:

HC-06 module top view

HC-06 module back view

For the exercise in this section, a HC-06 Bluetooth module and LED are

attached to the EduCake, as shown below:

86Duino
www.86duino.com

-22-

From the 86Duino IDE, enter the following code to configure the HC-06

module:

With the above code, communication link for the 86Duino IDE’s Serial

Monitor can communicate with the Bluetooth interface, as shown below:

void setup()

{

 Serial.begin(9600);

 Serial.println("Enter AT commands:");

 Serial1.begin(9600); // configure baud rate to communicate

 // with the HC-06 module

}

void loop()

{

 // Read data from HC-06 and transmit data to the PC

 if (Serial1.available())

 Serial.write(Serial1.read());

 // Relay data from the PC to the HC-06 module

 if (Serial.available())

 Serial1.write(Serial.read());

}

86Duino
www.86duino.com

-23-

After power on and prior to establishing connectivity, the LED on the

HC-06 module is blinking and remain in AT command mode, where we

can change the module’s device-name, password, transmission speed

(baud rate) and etc., using the following AT command:

 AT： Check to see whether the module is functioning，an「OK」respond

indicate the module is functioning as expected.

 AT+NAMEaaa： Change the device name to「aaa」

 AT+PIN1234 ： Change the pairing password to「1234」

 AT+VERSION ： Request the module’s version information

 AT+BAUD1 ： Change the baud rate to 1200

 AT+BAUD2 ： Change the baud rate to 2400

 AT+BAUD3 ： Change the baud rate to 4800

 AT+BAUD4 ： Change the baud rate to 9600

 AT+BAUD5 ： Change the baud rate to 19200

 AT+BAUD6 ： Change the baud rate to 38400

 AT+BAUD7 ： Change the baud rate to 57600

86Duino
www.86duino.com

-24-

The first 3 AT command in the above list are commonly used.

 To change the module’s device name to “abc”, enter “AT +

NAMEabc”. The module respond with the message “OKsetname” to

indicate success.

 To change password to 1234, enter “AT + PIN1234”. The module

respond with the message “OKsetPIN” to indicate success.

While it’s not necessary to reboot the module after changing the

password, you need to turn off power and restart the device, in order for

device name change to take effect.

With the app created earlier for this 2nd exercise and the codes to

configure the HC-06 module, we can move on to the next step to control

an LED via Bluetooth, with the following codes:

char ch;

int LED=0; // Initialize LED status variable

void setup()

{

 Serial.begin(9600); // Configure dev machine serial port

 // baud rate

86Duino
www.86duino.com

-25-

With the above codes in place, let’s direct our focus to the Android

device. First, make sure the Android device is paired with the HC-06

Bluetooth module, as shown below:

Serial1.begin(9600); // Configure baud rate for Bluetooth

 // connection

 pinMode(5, OUTPUT); // Configure pin #5 as output

}

void loop()

{

 if (Serial1.available()) // check for available data

 {

 ch = Serial1.read(); // when data is present, read 1 byte

 if (ch == 'a') // Check whether received data is “a”

 {

 if (LED==LOW) // check whether pin 5 is low

 {

 digitalWrite(5, HIGH); // set pin 5 to high

 LED=HIGH; // change LED status variable to high

 }

 else

 {

 digitalWrite(5, LOW);

 LED=LOW;

 }

 }

 }

86Duino
www.86duino.com

-26-

Next, launch the Bluetooth_Connect app and click on Select Bluetooth

Device, as shown below:

After clicking on “Select Bluetooth Device”, the app launch a new

screen to show the paired HC-06 module and other Bluetooth devices, as

shown below:

86Duino
www.86duino.com

-27-

Once connection to the HC-06 module is established, the “Click Me”

button will show, as shown below:

When you click on the “Click Me” button, the LED on the EduCake

should light up. Clicking on the “Click Me” button again to turn off the

LED.

86Duino
www.86duino.com

-28-

4. Third sample app

Continue from the second sample app, in this third exercise, we will add

more function to the app. If you like to save the app prior to making

changes, from the Project menu select the Save project as … option to

save the app in a different name.

Continue from the second sample app, delete Button1 from the

Components section, as shown below:

The sample app in the previous section control one LED. In this

exercise, we will extend the app to control 5 LEDs. In addition, we will

add 3 additional push button to the circuitry.

We need to place 5 button controls, align horizontally, to control the 5

LEDs. To accomplish this, we need to use the HorizontalArrangement

layout component. From the Palette section, in the Layout group, select

and drag the HorizontalArrangement component onto the Viewer and

change the Width property to “Fill parent”, as shown below:

86Duino
www.86duino.com

-29-

From the Palette section, select and drag a button control onto the

Viewer section, place the button control inside the

HorizontalArrangement component, change the Text property to “LED1”

and Height to 50 pixels, as shown below:

Repeat the same process to add 4 more button controls with Text

property, LED2, LED3, LED4 and LED5, as shown below:

86Duino
www.86duino.com

-30-

Depending on the device you are targeting, the 5 LED button controls

may not evenly align on the display. To fix this, you can change the

width property for all 5 LED button control to “Fill parent”.

Next, drag another HorizontalArrangement component onto the

Viewer and change the width property to “Fill parent”, as shown below:

From the User Interface component group, select and drag the

CheckBox component onto the 2nd HorizontalArrangement on Viewer

and change the Text property to “Button 1”, as shown below:

Using the same process, add two more CheckBox and change the text

property to Button2 and Button3, as shown below:

86Duino
www.86duino.com

-31-

These three CheckBox components are linked to the push-button,

which are part of the circuit attached to the EduCake for this exercise, and

will be used to indicate when each of the push button is pressed.

Next, add one more button component onto the Viewer, change the

Fontsize to “20”, width property to “Fill parent” and the Text property

to “Disconnect”, as shown below:

When the application is launched, prior to establishing Bluetooth

connectivity, the button controls for the LEDs, CheckBox controls for the

push-button and the Disconnect button should not be visible. To hide

all 5 button controls for LED, we can simply change the Visible property

HorizontalArrangement1 component to “hidden”, as shown below:

86Duino
www.86duino.com

-32-

To hide all three CheckBox components, change the Visible property

for HorizontalArrangement2 component to “hidden”. To hide the

Disconnect button, change the Visible property for Button6 to

“hidden”.

Next, from the Sensors component group in the Palette section, select

and drag the Clock component onto the Viewer. The Clock component is

a non-visible component and does not shows up on the app screen, as

shown below:

86Duino
www.86duino.com

-33-

Change the following properties for Clock1 component:

 Uncheck the TimerEnabled checkbox

 Change the TimerInterval property to 10 millisecond

Next, with all of the required layout components in place, we will switch

to the Blocks mode to add programming logic.

Similar to the app in the previous section, after establishing Bluetooth

connectivity, we need to make the 5 LED button controls, 3 push-button

Checkbox controls and the Disconnect button visible, and set

TimerEnabled property for Clock1 to true. To do this, we need to change

the Visible property for HorizontalArrangement1 (for the 5 LED button

controls), HorizontalArrangement2 (for the 3 push-button Checkbox

controls) and Button6 (Disconnect button) from hidden to visible, via the

following function blocks:

86Duino
www.86duino.com

-34-

Next, we need to add function block to control the 5 LEDs via the

Button.Click event and the BluetoothClient.SendText, as shown below:

When each of these 5 buttons is clicked, the BluetoothJClient

component send the corresponding value (1, 2, 3, 4 or 5) to EduCake to

turn on the associated LED.

Next, the app needs to have a way to check whether any of the 3

push-button, part of the circuitry attached to the EduCake, is pressed,

using Clock1.Timer event to send polling signal to EduCake, as shown

below:

86Duino
www.86duino.com

-35-

The Clock1.Timer event is set to fire every 10 millisecond. Each time the

timer event fires, it triggers the BluetoothClient1 component to send the

character “a” to EduCake.

Next, we need a function block to check whether there incoming data

received by the BluetoothClient1 with the following function block:

Then, add the following function block to retrieve the received data and

enable the corresponding CheckBox:

86Duino
www.86duino.com

-36-

Next, we need to add function block for Button6, the Disconnect button.

When Disconnect button is clicked, in addition to disconnect the

Bluetooth connection, the app needs to hide the 5 LED button controls

and the 3 push-button CheckBox and disable Clock1 from triggering

timer event, using the following function block.

You may be wondering why Clock1 component is needed as part of the

process to communicate with the EduCake. The Clock1 component is

used to address timing issue associate with sending and receiving data.

Within a mechanism to control timing, data transmitted to the EduCake

via the Bluetooth connection is not predictable, can be too fast for the

EduCake to respond to and cause data to be lost. Instead of transmitting

data in an unpredictable manner, the app on the EduCake is written to

wait for the Android device to request data to be send by transmitting the

character “a”. When EduCake received the character “a”, it will

return the intended data, where the Android device is ready to receive the

data.

86Duino
www.86duino.com

-37-

Next, we will attach 4 more LEDs to the EduCake and have 5 LEDs total

on the circuit and another 3 push-button, as shown in the circuitry below:

From the 86Duino IDE, enter the following code:

char ch;

int LED[5]={0,0,0,0,0}; // 把 5 個腳位狀態先存到陣列裡面

void setup() {

 Serial.begin(9600); // 這行主要是設定和電腦的 COM 通訊的速度

 Serial1.begin(9600); // 這行主要是設定和藍芽 通訊的速度

 for(int a=2;a<7;a++) // 先設定這五個腳位為輸出模式

 pinMode(a, OUTPUT);

 for(int a=7;a<10;a++) // 先設定這三個腳位為輸入模式

 pinMode(a, INPUT);

}

void loop() {

 if (Serial1.available() > 0)

 {

86Duino
www.86duino.com

-38-

In the above code, it’s written to handle character value. The

simplest method to convert to numeric value is to subtract 0. The code

uses a 5 position array to handle the 5 LEDs, with the range from 0 to 4, by

subtracting 1, we get the corresponding value, with the following line of

 ch = Serial1.read();

 if(ch == 'a') // 等待 Android 端傳送"a"過來

 {

 if(digitalRead(7)) // 偵測 pin7 按鈕是否按下

 Serial1.print("1");

 else if(digitalRead(8)) // 偵測 pin8 按鈕是否按下

 Serial1.print("2");

 else if(digitalRead(9)) // 偵測 pin9 按鈕是否按下

 Serial1.print("3");

 else

 Serial1.print("0");

 }

 else

 {

 if(LED[ch-'0'-1]==LOW)

 {

 LED[ch-'0'-1]=HIGH; // 儲存 LED 的狀態

 digitalWrite(ch-'0'+1, HIGH);

 }

 else

 {

 LED[ch-'0'-1]=LOW;

 digitalWrite(ch-'0'+1, LOW);

 }

 }

86Duino
www.86duino.com

-39-

code:

On the Android device, when the LED1 Button is click which cause the

app to send a “1” to EduCake, it’s corresponding to the first position

in the array, which is “0”.

With the above code running on the EduCake, clicking on LED1 through

LED5 on the Android device should turn on the corresponding LED on the

EduCake. Pressing the push-button on the EduCake should cause the

corresponding CheckBox to indicate the button is pressed.

if(LED[ch-'0'-1]==LOW)

