
86Duino
www.86duino.com

-1-

Music Player and Mixer

1. Introduction to Audio Function

Before getting into the fun stuffs, using EduCake to transmit sound

and play nice music, let’s take a look at audio function to better

understand audio and sound wave.

First, we need to understand that sound is a vibration that propagates

and transmits through a medium, such as air or water. Sound travels

at different speed through different type of medium. As sound wave

reaches human ear, the sound vibrates in varying frequencies causes

our ear’s membrane to sense and detect the sound, part of

human’s hearing mechanism.

In general, human is capable of hearing sound between the 20Hz to

20,000Hz range and cannot hear sound wave outside of this range.

Animal such as dog is more sensitive to sound that human and able to

hear sound between the 40Hz to 50,000Hz range. We can perform

experiment using ultrasound module that can emit sound wave above

the 20,000Hz range where it’s not detectable by human and audible

to dog.

86Duino
www.86duino.com

-2-

Hz (short for Hertz) is used as the measurement for sound wave

frequency, as shown in figure-1 below:

Figure-1: A simple sound wave

In figure-1, the graph represent a simple sound wave, similar to PWM

signal covered in the earlier chapter, where each signal transition from

high-to-low or low-to-high represent a single vibration with different

in amplitude. Sound frequency is calculated by counting the number

of signal transition within one second, where 300Hz represent a sound

wave that vibrate 300 times per second. To human ear, sound wave

at higher frequency is sharper than low frequency. The sound wave

amplitude is relative to the noise level. Sound wave with higher

amplitude is louder.

Another characteristic for sound is timbre, also known as tone color or

tone quality, as represent by the graph in figure-2. In music, timbre is

what make a musical instrument sounds different from another, such

as Piano versus violin, even they are both playing the same frequency

and amplitude (same note and volume). Timbre is a sound

characteristic that human use to identify whether the sound is

generated by a Piano or Violin, which is quite distinct. While different

type of musical instrument can generate musical note based on the

same frequency at the same amplitude, the sound density and rigidity

are different from different type of musical instrument. By mixing

sound from different instrument, musician is able to produce amazing

music.

86Duino
www.86duino.com

-3-

Figure-2: Timbre

By controlling sound wave’s timbre, amplitude and varying density,

we can generate beautiful sound. The sound wave’s amplitude,

which affect audio volume, can be controlled by increasing or

decreasing electrical current similar to PWM, and can create audio

sensation that make it seems like the sound wave is coming from a

distance. With two different channel of sound waves, it’s possible to

generate 3D and stereo audio sensation, where you can hear moving

object such as automobile, moving from left to right, or gradually

moving away and vice versa. In additional to controlling sound

wave’s output, the audio input function can be adopted to perform

voice recognition and converts sound wave into input and command

for an application.

This application note is intended to provide basic information about

audio function and does not cover the advanced function mentioned

in the previous paragraph. Perhaps, we can cover some of the more

advanced audio function in future application note.

86Duino
www.86duino.com

-4-

tone(pin, frequency)

tone(pin, frequency, duration)

pin: Designated pin to generate the signal output

frequency: Output frequency, as an unsigned integer.
(Human can hear tone within the 20 ~ 20,000 Hz range)

duration: Output duration in millisecond, as an unsigned
long variable. (Optional)

2. Audio Output Function

In this section, we will work through sample exercise to generate audio

output using the EduCake. Before getting to the exercise, let’s take

a look at the tone() and notone() functions.

The tone() function is used to generate square wave at a specified

frequency (a 50% duty cycle PWM signal) on a designated digital pin

and attach a buzzer or speaker to the pin to generate different tone by

changing the frequency. The tone() function can be called with

parameters to generate tone different frequency, for a predetermined

duration or until the noTone() function is called. Only one tone can

be generated at a given time. If a tone is already playing on a pin,

calling the tone() function does not have any effect. If the tone is

playing on the same pin, the call will set its frequency.

To generate different tone on multiple pins, you need to call the

noTone() function prior to calling the tone() function.

The tone() function usage:

First, construct the circuit as shown in Figure-3:

86Duino
www.86duino.com

-5-

Figure-3. Single speaker circuit

In the above circuit, the 100µF capacitor is used as filter. It’s also

common for some people to use a resistor instead. Since the

resistance for the buzzer or speaker is low, placing a resistor in series

help lower the current flow to avoid damaging the board. However,

the additional resistor will lower the output volume. You can

experiment different methods to control audio output, such as

connecting different size capacitor in series or parallel, different

resistance in series, use different type or size of buzzer/speaker or use

transistor to amplify current to increase audio volume and etc.

In today’s market, there are different option and technology you can

use to generate audio with different quality. Using vibration

resonance speaker, you can turn just about any surface into a speaker.

Or, you can use speaker design based on the popular Nautilus speaker

design to output high quality audio. With a buzzer/speaker attached

to Pin #7, as shown in Figure-3, you can use the following codes to

generate audio output:

86Duino
www.86duino.com

-6-

Next, we will alter the circuit to simulate left and right audio channels,

using resister to control audio volume, as shown in Figure-4:

Figure-4. Dual channels speaker circuit

Modify the code to generate audio output to both speaker, alternating

between left-channel and right-channel speaker, as shown below:

int left_sound=10;
int right_sound=3;
void setup()
{ }
void loop()
{
 tone(left_sound, 500); // Output 500Hz tone to left channel
 delay(500); // Delay 500ms, while left-channel output
continue
 noTone(left_sound); // turn off left-channel output
 tone(right_sound, 500); // Output 500Hz tone to right channel
 delay(500); // Delay 500ms, while right-channel output
continue
 noTone(right_sound); // turn off right-channel output
}

void setup()
{ }
void loop()
{
 tone(7, 500); // Output 500Hz tone using Pin-7
 delay(500); // Delay 500ms, while Pin-7 output continue
 noTone(7); // Turn off Pin-7 tone output
 delay(500);
}

86Duino
www.86duino.com

-7-

In the above circuit, Figure-4, you can control audio output volume by

changing the circuitry with adjustable resistance. With appropriate

electronic components and codes to control the circuit, you can

dynamically control audio output remotely from a PC, through the

serial interface, and create an application on the PC with UI and slider

control, which enable you to control audio output using the mouse.

86Duino
www.86duino.com

-8-

3. Musical Note and Beat

To play with music, we need to have some basic understanding about

musical note and beat, where a musical note specify the frequency and

the beat specify the pace (speed) to play the musical notes. In the

musical world, “180 beat per minute” represent playing 180

different musical notes within a minute, which is referred to as the

tempo.

The higher value for beat the faster pace the music is playing. For

music playing at a slower pace, the value for the beat is lower. The beat

can be used to control the pace, or tempo, to play musical notes. In

the earlier examples, the time delay between calling the tone() and

notone() function control how fast the next tone is played after the

current tone, which is the beat or tempo.

Musical note is a bit more complicated. There are 7 notes, C, D, E, F, G,

A, B and 5 half-notes, C#, D#, F#, G# and A#, which make up a total of

12 musical notes. These musical notes can be generated at lower or

higher pitch in different frequency range. Using piano key as

reference, which include musical notes from 9 different octave (octave

0 to 8), following is a list of frequency for the 7 musical notes in 3

different octave:

 The following frequencies generate C, D, E, F, G, A, B musical

notes equivalent to octave 4 on a full size piano:

262, 294, 330, 349, 392, 440, 494

 The following frequencies generate C, D, E, F, G, A, B musical

notes equivalent to octave 5 on a full size piano:

523, 587, 659, 784, 880, 988

 The following frequencies generate C, D, E, F, G, A, B musical

notes equivalent to octave 6 on a full size piano:

1046, 1175, 1318, 1397, 1568, 1760, 1976

86Duino
www.86duino.com

-9-

Musical note at a higher octave has a higher pitch sound. It’s not

within this application note’s objective to talk about music theory.

For more information, refer to the following URL:

 http://en.wikipedia.org/wiki/Note

The following codes output the 7 musical notes at lower pitch:

While the sound output is different when the output is attached to a

small speaker, larger speaker or a buzzer, you can hear distinctively the

7 musical notes.

To hear the 7 musical notes at different pitch, change the frequency

array as follow:

And, change the for loop to the following:

// Assign the 7 frequency associate with musical notes
// to an array
int frequency[]={262,294,330,349,392,440,494};

void setup()
{
}
void loop()
{
 int a;
 for (a=0;a<7;a++)
 {
 tone(7, frequency[a]); // Generate output through
Pin-7
 delay(500); // Delay 500 ms
 noTone(7);
 }
}

int frequency[]={

 262,294,330,349,392,440,494,

 523,587,659,698,784,880,988,

 1046,1175,1318,1397,1568,1760,1976};

for (a=0;a<7;a++) change to for (a=0;a<21;a++)

86Duino
www.86duino.com

-10-

With the above modification, the 7 musical notes in three different

pitch (total 21 notes) will be generated. Following the musical notes

sequences and beat from a music sheet and map the notes to a music

frequency table, you can use the EduCake to play music.

86Duino
www.86duino.com

-11-

4. High-Low Tone and Siren

In the previous section, we talked about generating tones and musical

notes. In this section, let’s talk about sound effects.

Using EduCake, we can generate different sound effects that fluctuate

between different frequencies, continuously or intermittently,

switching between higher and lower pitch or generating random tones

programmatically.

The audible audio range for human is between the 20 ~ 20,000Hz

frequency range. The codes in the following listing is designed to

generate tone within this range:

Based on the experiment we have done, using a common 6 cm PC

speaker, the tone is not audible above 12,000 Hz. To output audible

higher pitch tone at higher frequency, we need to use a smaller

speaker.

Next, let’s look at the following code that output beep sound:

void setup()
{
}
void loop()
{
 int a;

 // Generate tone at 10 Hz increment
 // Starting from 20 Hz, within the 20 – 20,000 range
 for(a=20;a<20000;a+=10)
 {
 tone(7,a);
 delay(5);
 }
 noTone(7);
}

86Duino
www.86duino.com

-12-

 From the above code, we can see the beeping sound is generated by

switching tone on and off. By varying the delay time, we can generate

beeping sound with different effects. By encapsulating the above

codes in a loop, with additional code to create a accelerated sound

effect, we can create sound that simulate something falling, as follow:

By changing some of the parameters used in the above code, we can

generate interesting sound effect, such as changing the “tone (7, s);”

function call to “tone (7, 3500-s);”, which will generate sound effect

that simulate object moving upward. Varying the V+=10 gravity

void setup()
{
}
void loop()
{

tone(7 ,900); // use a frequency other than 900 to
output

 // different sound
 delay(200); // Delay time is used to control beeping
speed
 noTone(7);
 delay(300);
}

void setup()
{
}
void loop()
{
 int a;
 // Assuming an object is falling from 3500 meter
 // The initial traveling speed is zero
 // using 10 as the gravity acceleration value
 double v=0,s=3500;
 while (s>50) // Falling object stop at 50 meters
 {

tone(7,s); // Using the height from the falling object
as

 // frequency for output, represent by s
 delay(30);
 noTone(7);
 s-=v; // Update the current height
 v+=10; // gravity acceleration adjustment
 }
}

86Duino
www.86duino.com

-13-

acceleration and delay() parameters also trigger changes to the sound

effect. We can generate even more interesting sound effect by

adding trigonometry components into the code, as follow:

With the added trigonometry component, the sound effect is quite

different from the falling/rising sound effect in the previous section.

Different Sine-wave function trigger different sound effects, such as

cos(), tan() and etc. These high-low sound effects are similar to the

emergency siren used by police, ambulance and fire truck, which we

routinely hear as part of the daily living in any major metropolitan city.

Let’s take a look at the following code fragment:

void setup()
{
}
void loop()
{
 double a;
 for(a=0;a<100;a+=0.15)
 {
 tone(7, 1000+500*sin(a));
 //Circumference=2 pi =2x3.14=6.28, approximate 100

// Result from sin(a) function fluctuate between +1
to -1

// After multiply by 500 with 1000 added
 // The frequency alternate within the 500~1500
sine-wave
 delay(50);
 }
 noTone(7);
}

86Duino
www.86duino.com

-14-

By changing the delay and looping parameters in the above code

fragment, it can be modified to simulate high-low tone similar to the

police and ambulance siren. In real life, the actual siren we hear

typically travel rapidly from far to near or moving away rapidly, which

has Doppler Effect and change the siren’s frequency slightly.

To simulate real life siren traveling from far to near, we need to

gradually increase the siren frequencies (both high and low). To

simulate siren moving away, we need to gradually decrease the siren

frequencies.

To learn more about Doppler Effect, visit the following URL:

 http://simple.wikipedia.org/wiki/Doppler_effect

The code below uses random number as frequency and generate

unpredictable sound, which can sound like the robotic voice we hear in

the movie.

int spd =10; // spd value directly affect the looping speed
void setup()
{
}
void loop()
{
 int a;
 for(a=420;a<1300;a+= spd)
 {
 tone(7,a);
 delay(20);
 }
 for(a=1300;a>500;a-= spd)
 {
 tone(7,a);
 delay(30);
 }
 noTone(7);
}

86Duino
www.86duino.com

-15-

In the above code, the “random (100, 2000)” function generate a

random number within the 100 to 1999 range, which is used as the

frequency for the tone() function. Changing these 2 values and delay

time for the delay() function will change the above code to generate

some strange sound. Using the above technique, it’s possible to

generate just about any sound.

void setup()
{
 randomSeed(analogRead(0));
}

void loop()
{
 tone(7, random(100,2000));
 delay(100);
 noTone(7);
}

86Duino
www.86duino.com

-16-

5. Playing a Song and Analyzing Music Sheet

In the previous section, we talked about different audio output. In

this section, we use an EduCake to play an actual song. To play a

song, we need the music sheet for the song. Since many of the songs

have copyright and cannot be used without permission from the

copyright owner, we need to find song that is in the public domain,

not affected by copyright. To avoid copyright issue, we will use an

old Chinese folk song for the exercise in this section.

It’s not the intention for this application note to teach music and we

don’t need to have full understanding about music theory to

understand the sample in this section, just need to know how to read

the musical note on the music sheet. As shown in Figure-5, there

rows of musical notation represented by numeric number, with

number ranging from 1 through 7, which correspond to Do, Re, Me, Fa,

So, La Se or C, D, E, F, G, A, B. Using a full size piano as reference,

which has 88 key that produce musical notes that span 9 different

octave, octave-0 through octave-8, the equivalent numerical notes 1, 2,

3, 4, 5, 6 and 7 represent C4, D4, E4, F4, G4, A4 and B4. Numerical notes

with a dot below the number are one octave lower and numerical

notes with underline are one octave higher. Numerical note with a

dash after represent the note is play at an extended duration, where

each dash is equivalent to one beat.

Figure-5. Music sheet for an old Chinese folk song

86Duino
www.86duino.com

-17-

With the above music sheet, we need to convert the musical notes into

digital format in order to play the song using EduCake.

Based on the musical note and associated frequency discussed in

earlier section, the digital equivalent for musical note sequence from

the song and the beat for each of the notes are replicated into two

separate arrays, as shown in the following code listing:

In earlier exercise, we created the frequency[] array, which contain

frequencies for musical notes in 3 different octave, total of 21 notes.

Using the value from the tigerTone() array as the array index for the

frequency[] array, we can programmatically control EduCake to play

the song, using the following code:

// Index for corresponding frequency for each musical notes
in
// sequence from the song sheet
byte tigerTone[]=
{7,8,9,7,7,8,9,7,9,10,11, 9,10,11,18,19,18,17,9,7,
18,19,18,17,9,7,8,4,7,8,4,7};

// Corresponding beat for each of the musical notes,
// from the music sheet, which control the duration
// to play each of the musical notes
byte tigerBeat[]=//
{1,1,1,1,1,1,1,1,1,1,2,1,1,2,
1,1,1,1,1,1,1,1,1,1,1,1,1,1, 2,1,1,2};

const int speaker=13; // Use Pin-13 to general audio
output

// array contains frequencies for 21 musical notes
int frequency[]={
 262,294,330,349,392,440,494,
 523,587,659,698,784,880,988,
 1046,1175,1318,1397,1568,1760,1976};
byte tigerTone[]=
{7,8,9,7,7,8,9,7,9,10,11, 9,10,11,18,19,18,17,9,7,
18,19,18,17,9,7,8,4,1,8,4,1};
byte tigerBeat[]=
{1,1,1,1,1,1,1,1,1,1,2,1,1,2,
1,1,1,1,1,1,1,1,1,1,1,1,1,1, 2,1,1,2};

86Duino
www.86duino.com

-18-

The above code play the song form the music sheet continuously, as

shown in Figure-5. After finish playing the song, it wait for 3 seconds

and then loop back and play the song again.

The code above can be expanded to turn the EduCake into a music

playback device, with multiple push button to select songs, simple LCD

display to show operating status where the complete solution can be

packaged onto an SD storage card with storage space for the program

and collection of music files. By adding LCD touchscreen to the

solution, it’s possible to turn the solution into a song selector user

interface for karaoke sing along system.

// Length of the array containing musical notes for the
song
const int playLen=sizeof(tigerTone);

void setup()
{
}
void loop()
{
 int a;
 for(a=0;a< playLen -1;a++)
 {
 // As the coding looping through the tigerTone[] array,
 // Play the tone from the frequency[] array
 // Using the value from tigerTone[a] as the index
 tone(speaker,frequency[tigerTone[a]]);

 // Using the delay() function to control play duration
 // for each note
 // Base on the beat from the corresponding tigerBeat[]
array
 delay(300* tigerBeat[a]);
 // The 300 msec above represent time duration for 1 beat
 // where there are 180 beats in a min,
 // Which is approximately 300 msec for each beat
 noTone(speaker); // Turn off tone playback and
 // wait for next musical note
 }
 delay(3000);
}

86Duino
www.86duino.com

-19-

6. Multiple Songs Playback

In the previous section, we talked about the song selector interface for

karaoke sing along system. In this section, we will talk about a simple

implementation of song selector application, using button to select

song for playback.

For the multi songs selection exercise in this section, we will use 4

Chinese folk songs, “Two tigers”, “Little star”, “Little bee” and

“Little donkey”. We will create two arrays for each of the 4 songs,

one for the musical note sequence and the other for the

corresponding beat for each of the musical notes, as follow:

// Array containing frequencies for the 7 music notes in
3
// different pitch (octave), total of 21 notes

int frequency[]={
 262,294,330,349,392,440,494,
 523,587,659,698,784,880,988,
 1046,1175,1318,1397,1568,1760,1976};

// Musical note sequence for the song: Two tigers
byte tigerTone[]={7,8,9,7,7,8,9,7,9,10,11,
9,10,11,18,19,18,17,9,7, 18,19,18,
17,9,7,8,4,1,8,4,1};

// corresponding beat for the song: Two tigers
byte tigerBeat[]={1,1,1,1,1,1,1,1,1,1,2,1,1,2,
1,1,1,1,1,1,1,1,1,1,1,1,1,1, 2,1,1,2};

// Length for the Two tigers song
int tigerLen =sizeof(tigerTone) ;

// Musical note sequence for the song: Little bee
byte
beeTone[]={ 11,9,9,10,8,8,7,8,9,10,11,11,11,11,9,9,10,
8,8,7,9,11,11,9,8,8,8,8,8,9,
10,9,9,9,9,9,10,11,11,9,9,10,8,8,7,9,11,11,7};
// corresponding beat for the song: Little bee
byte
beeBeat[]={ 1,1,2,1,1,2,1,1,1,1,1,1,2,1,1,2,1,1,2,1,1,
1,1,4,1,1,1,1,1,1,2,1,1,
1,1,1,1,2,1,1,2,1,1,2,1,1,1,1,4};

86Duino
www.86duino.com

-20-

With the above arrays that contain the digital equivalent of the 4

songs, we can programmatically play these songs. Using an SD

storage card that can store large number of digital data, we can store

these songs in electronic format on to the SD storage card and create

an application to play back these songs from the SD card.

In the following exercise, we will use 4 push buttons map to the 4

songs. When a button is pressed, the program will play back the

corresponding song, as shown in the following code listing:

// Length for the Little bee song
int beeLen=sizeof(beeTone) ;

// Musical note sequence for the song: Little star
byte
starTone[]={7,7,11,11,12,12,11,10,10,9,9,8,8,7,11,11,1
0,10,9,9,8,11,11,10,
10,9,9,8,7,7,11,11,12,12,11,10,10,9,9,8,8,7};

// corresponding beat for the song: Little star
byte
starBeat[]={1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,2,
1,1,1,1,1,1,2,1,1,1,1,
1,1,2,1,1,1,1,1,1,2};

// Length for the Little star song
int starLen=sizeof(starTone) ;

// Musical note sequence for the song: Little donkey
byte
donTone[]={7,7,7,9,11,11,11,11,12,12,12,13,11,10,10,12
,12,9,9,9,9,8,8,8,8,
11,11,7,7,7,9,11,11,11,11,12,12,12,13,11,10,10,10,12,9
,9,9,9,9,8,8,8,9,7};

// corresponding beat for the song: Little donkey
byte
donBeat[]={ 1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,
1,1,1,1,2,1,1,1,1,1,1,1,1,
1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,4};

// Length for the Little donkey song
int donLen=sizeof(donTone) ;

86Duino
www.86duino.com

-21-

int play_no=-1; // Variable used to identify the song currently
 // playing, -1 represent music is not playing

int play_pos=0; // Variable used to identify the progress or
 // position of the notes currently playing.

int is_play=0; // Variable to identify whether music is playing

int bb[4]={2,3,4,5}; // Pin # attached to the 4 buttons
int bb_state[4]; // Variable to indicate the button status

void setup()
{
 int a;
 Serial.begin(9600);
 for(a=0;a<4;a++)
 pinMode(bb[a], INPUT_PULLUP);
}

void loop()
{
 int a;

 // Check to see whether any of the buttons is pressed
 for(a=0;a<4;a++)
 {
 bb_state[a]=digitalRead(bb[a]); //Log button status to array
 }

// Next, the code check the button status, assuming 1 button is
// pressed and play the corresponding song
// When 2 buttons are pressed at the same time,
// the two corresponding songs can play back at the same time.
// However, when 2 songs are play at the same time, it’s just
// noises that does not reflect any one of the song, which we
// are not going to do here.

 if (bb_state[0]==0) // Button 1 pressed, play the 1st song
 {
 // Output relevant info to the serial monitor

Serial.println(beeLen);

 play_no=1; // Set to play the 1st song
 play_pos=0; // Set to play from the beginning
 is_play=1; // Set to 1 to play, set to 0 to stop playing
 Serial.println("bee playing...");
 }
 else if (bb_state[1]==0) // Button 2 pressed, play the 2nd song
 {
 // Output relevant info to the serial monitor

Serial.println(starLen);

 play_no=2; // Set to play the 2nd song

86Duino
www.86duino.com

-22-

 play_pos=0; // Set to play from the beginning
 is_play=1; // Set to 1 to play, set to 0 to stop playing
 Serial.println("star playing...");
 }
 else if (bb_state[2]==0) // Button 3 pressed, play the 3rd song
 {
 Serial.println(tigerLen);
 play_no=3; // Set to play the 3rd song
 play_pos=0; // Set to play from the beginning
 is_play=1; // Set to 1 to play, set to 0 to stop playing
 Serial.println("tiger playing...");
 }
 else if (bb_state[3]==0) // Button 4 pressed, play the 4th song
 {
 Serial.println(donLen);
 play_no=4; // Set to play the 4th song
 play_pos=0; // Set to play from the beginning
 is_play=1; // Set to 1 to play, set to 0 to stop playing
 Serial.println("don playing...");
 }

playSong(); // Function to play the song
 delay(5);
}

// This function play one single note at specified beat
void play (byte toneNo, byte beatNo)
{
 tone(speaker,frequency[toneNo]);
 delay(300* beatNo);
 noTone(speaker);
}

// This function is called to play the song
void playSong()
{
 if (is_play==1) // Check to see whether the song is set to play
 {
 switch(play_no) // Switch statement to decide the song to play
 {
 case 1://beeTone
 if (play_pos>=beeLen) // check to see whether end of song
 {
 is_play=0; // end of song detected, set to stop playing
 return ; //
 }
 //Not end of song, play current musical note
 play (beeTone[play_pos],beeBeat[play_pos]);
 play_pos++; //Increment to the next musical note position
 break;

86Duino
www.86duino.com

-23-

With above code, when one of the 4 buttons is pressed, it will playback

the corresponding song from the beginning and stop when reaching

the end of the song. While playing, you can press a different button

and change to play a different song. With additional code and

hardware, you can expand the above code to provide more interesting

feature, such as automatically play the next song in sequence after the

current song is finished, using infrared interface to remotely control

music playback, press a button to keep on repeating the current song

and etc.

 case 2://starTone
 if (play_pos>=starLen)

 {
 is_play=0;
 return ;
 }
 play (starTone[play_pos],starBeat[play_pos]);
 play_pos++;
 break;
 case 3://tigerTone
 if (play_pos>=tigerLen)
 {
 is_play=0;
 return ;
 }
 play (tigerTone[play_pos],tigerBeat[play_pos]);
 play_pos++;
 break;
 case 4://donTone
 if (play_pos>=donLen)
 {
 is_play=0;
 return ;
 }
 play (donTone[play_pos],donBeat[play_pos]);
 play_pos++;
 break;
 }
 }
}

86Duino
www.86duino.com

-24-

7. Change Playback Speed, Pitch & Audio Mix

Continue to the basic and multiple song playback technique covered

in the previous section, there are many other techniques we can use to

create fun and interesting audio function.

At many music and entertainment performance stage, we often see an

audio control center with expensive sound synthesizer and audio

control equipment, with lots of buttons and different type of controls,

operate by a sound technician. During a performance, the audio

control center is responsible for playing appropriate music when the

performance is idle, control the volume and quality of the audio

during the performance, inject and mix different type sound effect,

with the music, as part of the performance to deliver the intended

sound effects, such as animal sound, sound that simulate collision

between different things, metallic sound and etc.

While the low-cost Arduino grade hardware, including the 86Duino

EduCake, is not designed to deliver high resolution audio playback

and sound effects as the professional sound equipment, with the right

electronic components and application code, you can control playback

speed, change the pitch of the sound and mix multiple audio during

playback using the EduCake.

There are different techniques to mix multiple audio at different

frequencies, by adding the two frequencies then divide by 2,

combining the two frequencies and multiple by a certain factor,

adding one audio source at higher volume with another audio source

at lower volume, and etc. When mixing multiple audio streams, you

can achieve better result at higher sampling rate. For the samples in

the previous section, the audio playback about 3 notes per second,

equivalent to 3 Hz/sec sampling rate. Music we listen to typically is in

the range of 22K Hz/Sec sampling rate or even higher. Dealing with

different type of audio with different quality is a complex subject, and

is not the scope for this application note to cover.

86Duino
www.86duino.com

-25-

Within the “void play(byte toneNo, byte beatNo)” function, the

beatNo variable can be adjusted to controls playback speed. For the

sample for this section, the play_spd variable is used to control

playback speed.

With regard to audio volume, you can control the volume by varying

the output power. Since the output current from the I/O pin on the

EduCake is low, it’s range is limited to change audio volume that is

noticeable to human hearing. We need an audio amplifier module, as

shown in Figure-6, to produce higher audio volume.

Figure-6. Audio amplifier module

To change the audio’s pitch during playback, we need to incorporate

a variable to change the pitch. There are different methods to alter

the pitch during playback. For the exercise in this section, we can use

the following two methods:

1. Change all the frequencies in the array that contains the 21

frequencies that represent 7 musical notes in 3 different pitch,

at the same proportion to raise or lower the pitch for all 21

musical notes.

86Duino
www.86duino.com

-26-

2. Use the play_keys variable to adjust the pitch during playback,

by adding or subtracting the play_keys variable’s value with

the playback frequency, where the play_keys value is within

the -300 to 600 range.

Use the circuitry as shown in Figure-7 to work through the exercise in

the section.

Figure-7. Circuitry for the exercise.

Following is the code listing for the exercise:

86Duino
www.86duino.com

-27-

int speaker_pin=13; // Configure Pin-13 as audio output

// Array contains frequencies for the 7 musical notes
// in 3 different octave, total 21 musical notes
int frequency[]={
 262,294,330,349,392,440,494,
 523,587,659,698,784,880,988,
 1046,1175,1318,1397,1568,1760,1976};

// Musical note sequence for song: Two tigers
byte tigerTone[]={7,8,9,7,7,8,9,7,9,10,11,
9,10,11,18,19,18,17,9,7, 18,19,18,17,9,7,8,4,1,8,4,1};

// corresponding beat for song: Two tigers
byte tigerBeat[]={1,1,1,1,1,1,1,1,1,1,2,1,1,2,
1,1,1,1,1,1,1,1,1,1,1,1,1,1, 2,1,1,2};

// Length of song: Two tigers
int tigerLen =sizeof(tigerTone) ;

// Musical note sequence for song: Little bee
byte beeTone[]={
11,9,9,10,8,8,7,8,9,10,11,11,11,11,9,9,10,8,8,7,9,11,11,
9,8,8,8,8,8,9,10,9,9,9,9,9,10,11,11,9,9,10,8,8,7,9,11,11
,7};

// corresponding beat for song: Little bee
byte
beeBeat[]={ 1,1,2,1,1,2,1,1,1,1,1,1,2,1,1,2,1,1,2,1,1,1,
1,4,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,2,1,1,2,1,1,1,1,4};

// Length of song: Little bee
int beeLen=sizeof(beeTone) ;
// Musical note sequence for song: Little star
byte
starTone[]={7,7,11,11,12,12,11,10,10,9,9,8,8,7,11,11,10,
10,9,9,8,11,11,10,10,9,9,8,7,7,11,11,12,12,11,10,10,9,9,
8,8,7};

// corresponding beat for song: Little star
byte
starBeat[]={1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,
1,
1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,2};
// Length of song: Little star
int starLen=sizeof(starTone) ;

// Musical note sequence for song: Little donkey
byte

86Duino
www.86duino.com

-28-

donTone[]={7,7,7,9,11,11,11,11,12,12,12,13,11,10,10,12,1
2,
9,9,9,9,8,8,8,8,11,11,7,7,7,9,11,11,11,11,12,12,12,13,11
,10,10,10,12,9,9,9,9,9,8,8,8,9,7};

// corresponding beat for song: Little donkey
byte
donBeat[]={ 1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,
1,
1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,
1,1,4};

// Length of song: Little donkey
int donLen=sizeof(donTone) ;

int play_spd =0; // Variable to control playback speed
int play_no=-1; // Variable to identify the song currently
playing
 // play_no = -1 represent not playing
int play_pos=0; // Variable to identify current playback
position
int is_play=0; // Variable to indicate whether playback is
active
int play_keys=0; // Variable to adjust sound pitch during
playback
 // range for play_keys variable is
-300~+600

// Array to configure Pin# assigned to each of the 10 buttons
// button 1 to 4 to playback song 1 through 4
// button 5 and 6 to control pitch during playback
// button 7 and 8 to control playback speed
// button 9 and 10 to inject sound effects
int bb[10]={2,3,4,5,6,7,8,9,10,11};

// Status indicator for each of the 10 buttons
int bb_state[10];

void setup()
{
 int a;
 Serial.begin(9600);
 for(a=0;a<10;a++)

// Use internal Pull-up resistor to configure and
// initialize each of the 10 buttons

 pinMode(bb[a], INPUT_PULLUP);
}

86Duino
www.86duino.com

-29-

void loop()
{
 int a;

 // Scan and record current status for the 10 buttons
 for(a=0;a<10;a++)
 bb_state[a]=digitalRead(bb[a]);

 // Output current status for the buttons to serial
monitor
 for(a=0;a<10;a++)
 {
 Serial.print(bb_state[a]);
 Serial.print(", ");
 }
 Serial.println("");

 if (bb_state[0]==0) //Play the 1st song
 {

Serial.println(beeLen);// Output length of the current
 // song via serial monitor

 play_spd =0; // initialize playback speed
 play_no=1; // Variable to indicate 1st song is playing
 play_pos=0; // Set to play from the beginning
 play_keys=0; // Initialize pitch control variable
 is_play=1; // Set to “1” to play and “0” to stop playing
 Serial.println("bee playing...");
 }

 else if (bb_state[1]==0) // Play the 2nd song
 {
 Serial.println(starLen);
 play_spd =0;
 play_no=2;
 play_pos=0;
 play_keys=0;
 is_play=1;
 Serial.println("star playing...");
 }

 else if (bb_state[2]==0) // Play the 3rd song
 {
 Serial.println(tigerLen);
 play_spd =0;
 play_no=3;
 play_pos=0;
 play_keys=0;
 is_play=1;
 Serial.println("tiger playing...");
 }

86Duino
www.86duino.com

-30-

 else if (bb_state[3]==0) // Play the 4th song
 {
 Serial.println(donLen);
 play_spd =0;
 play_no=4;
 play_pos=0;
 play_keys=0;
 is_play=1;
 Serial.println("don playing...");
 }

 else if (bb_state[4]==0) // Raise audio pitch
 {

if (play_keys<600)
 play_keys+=50;

else
 // 600 is the maximum value to deviate the pitch

 play_keys=600;
 }
 else if (bb_state[5]==0) // Lower audio pitch
 {
 if (play_keys<-300)
 play_keys=-300;
 else
 play_keys-=50;
 }

 else if (bb_state[6]==0)// decrease playback speed
 {
 play_spd +=100;
 if (play_spd >1000)
 play_spd =1000;
 }

 else if (bb_state[7]==0)// increase playback speed
 {
 play_spd -=50;
 if (play_spd <-200)
 play_spd =-200;
 }

 // inject 1st sound effect, about 0.6 second
 else if (bb_state[8]==0)
 {
 for(a=0;a<5;a++) // generate low frequency sound
 {
 tone(speaker, 150);
 delay(50);
 tone(speaker, 250);
 delay(50);

86Duino
www.86duino.com

-31-

 }
 }

 // inject 2nd sound effect, about 0.6 second
 else if (bb_state[9]==0)
 {
 for(a=1000;a<1600;a+=20) // Generate high frequency sound
 {
 tone(speaker, a);
 delay(20);
 }
 }

 playSong();// Function to playback song
 delay(2);
}

// Function to playback a single musical note
//
void play (byte toneNo, byte beatNo)
{
 // Combine tone frequency with the pitch adjustment value
 int pk=play_keys+frequency[toneNo];

 tone(speaker, pk);

 // play_spd value added to the delay to control playback
speed
 delay(300* beatNo+ play_spd);
 noTone(speaker);
}

// Function to playback sequence of musical notes in a song
void playSong()
{
 if (is_play==1) // stop playing when is_play not equal to
1
 {
 // Switch statement to select song for playback
 switch(play_no)

{

case 1: // Play the song Little bee

 if (play_pos>=beeLen) // Check whether is end of song
 {
 is_play=0; // End of song, set is_play to 0 to stop
 return ;
 }

86Duino
www.86duino.com

-32-

 // Not end of song, continue to play
 play (beeTone[play_pos],beeBeat[play_pos]);
 play_pos++; // Increase the current play position to next
 break;

 case 2: // Play the song Little star
 if (play_pos>=starLen)
 {
 is_play=0;
 return ;
 }
 play (starTone[play_pos],starBeat[play_pos]);
 play_pos++;
 break;

 case 3: // Play the song Two tigers
 if (play_pos>=tigerLen)
 {
 is_play=0;
 return ;
 }
 play (tigerTone[play_pos],tigerBeat[play_pos]);
 play_pos++;
 break;

 case 4: // Play the song Little donkey
 if (play_pos>=donLen)
 {
 is_play=0;
 return ;
 }
 play (donTone[play_pos],donBeat[play_pos]);
 play_pos++;
 break;
 }
 }
}

