
86Duino
www.86duino.com

-1-

Using Matrix Keyboard with EduCake

1. Matrix Keyboard Introduction

In addition to the sensor, digital to analog conversion and serial port

applications in the earlier application notes, matrix keyboard is

another common interface we can use to interact with the 86Duino

EduCake.

For an automation-control application, one of the key component is

the user interface to the system that enables the user to send

command and control signals to the system. The matrix keyboard

with multiple inputs is an useful interface to send command and

control signals. Matrix keyboard function is similar to the push button

86Duino
www.86duino.com

-2-

input combines with the digitalRead() function, covered in the earlier

application note. Programming a single push button control is quite

different from a matrix keyboard with multiple input.

Matrix keyboard has been around for quite sometimes, and is readily

available in the market in different sizes, configurations and

mechanical form factors. There are off the shelf smaller matrix

keyboards, 3x4 and 4x4, that are fabricated with 12 and 16 keys with 0

to 9, along with *, # and other marking.

For project with small number of simple control, such as to turn the

device on/off, reset the device and to change the device’s operating

mode, where only a few buttons are needed, you can simply attach the

required number of push button and associate each button to a digital

I/O to capture user input.

For project with complex control that requires large number of input

signals that are different, matrix keyboard is a good solution that can

provide relatively large variation of input that utilize small number of

I/O pins.

Programing a 4x4 matrix keyboard is similar to programming a 4x4

LED matrix, which we covered in an earlier application notes. Instead

of using a group of I/O pins to control signal output to the LED matrix,

programming for matrix keyboard is focusing on capturing I/O pins

input signal and translate these signals into commands, as shown in

figure-1.

Figure-1. 4X4 matrix keyboard wiring.

0 行0~3 3

0

列0~3

3

86Duino
www.86duino.com

-3-

Using push button control, which requires one I/O pin for each button,

it takes 16 I/O pins to provide 16 button control. A 4x4 matrix

keyboard with 16 input controls only occupies 8 I/O pins. The

electronic circuitry to implement matrix keyboard is different from a

simple push button control. Each of the 16 buttons on a 4x4 matrix

keyboard has two pins, where one of the pin is connected to 3 other

buttons on the same row and the other pin is connected to 3 other

buttons on the same column, as shown in Figure-1.

The process and codes to read the status for each button on a matrix

keyboard is more complex than the simple push button control, where

each button is linked to one I/O pin. To read the status of the buttons

on a matrix keyboard, you need to write codes to scan and read button

status one row at a time or one column at a time. Figure-2 shows the

process to scan through and read button status, one row at a time.

Figure-2. Scan and read button status on a 4x4 matrix keyboard

To scan through each row and read button status, as indicate in

Figure-2, 4 digital input pins from the 86Duino EduCake are connected

to the matrix keyboard to read the data with another 4 digital output

pin connected to the keyboard to control the active row (or column) to

be scanned and read button status. Depending on the circuitry,

orientation for the matrix keyboard and the associated application

86Duino
www.86duino.com

-4-

codes, you can scan through each row or each Column to read button

status. For the exercise in this application note, we will use a 4x4

matrix keyboard, as shown in figure-3.

Figure-3. 4X4 matrix keyboard pin definition

For this matrix keyboard module, when a button is pressed, the

corresponding pins for the row and column linked to the button are

shorted. The wiring connections for the matrix key board is linked to

the attached connector, as shown in figure-3, from left to right are as

follow:

 [Row-0, row-1, row-2, row3, column-0, column-1, column-2,

column-3]

If you are using a different type of module, you need to check and

identify how the pins are connected to the buttons.

The 86Duino EduCake has more than 20 usable I/O pins, where AD pin

can be used as input to read pin status, suitable for I/O application

that does not require high number of I/O pins. For application

scenario that requires large number of keys, it’s best to utilize IC chip

designed to provide keyboard function.

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

針腳定義，依序為：
[列0，列1，列2，列3，行0，行1，行2，行3]

0 行0~3 3

0

列0~3

3

86Duino
www.86duino.com

-5-

2. First exercise: Keyboard scanning principle
In this section, we will work through an exercise using an EduCake and

the 4x4 matrix keyboard mentioned in the previous section, to show

how to scan through and read button status.

Attach the matrix keyboard to the EduCake as shown in the following

figure:

Connection from the matrix keyboard for row 0~3 and column 0~3 are

connected to Pin 9~2 on the EduCake. Launch 86Duino Coding IDE

and enter the following codes:

const int Rows = 4; // Number of rows in the matrix
const int Cols = 4; // Number of columns in the matrix

// Map corresponding button to the matrix
char keys[Rows][Cols] =
{
 {'1','2','3','A'},
 {'4','5','6','B'},
 {'7','8','9','C'},
 {'*','0','#','D'}
};
// Previous button status
bool keys_status_last[Rows][Cols] =
{
 {false,false,false,false},
 {false,false,false,false},
 {false,false,false,false},
 {false,false,false,false}
};

86Duino
www.86duino.com

-6-

// Associate pins from EduCake to the matrix keyboard
// Row 0~3 on the keyboard
int row_pins[Rows] = {9, 8, 7, 6};
// Column 0~3 on the keyboard
int col_pins[Cols] = {5, 4, 3, 2};

void setup()
{

 // Configure I/O mode for the pin attached to the keyboard
 // Read the voltage stage for the pins on the column
 for(int col = 0; col < Cols; col++)
 {
 pinMode(col_pins[col], INPUT_PULLUP);
 }

 // Use the pins associate with row as voltage source
 for(int row = 0; row < Rows; row++) // Scan row
 {
 pinMode(row_pins[row], OUTPUT);
 digitalWrite(row_pins[row], HIGH);
 }

 Serial.begin(115200);
}

void loop()
{
 for(int row = 0; row < Rows; row++) // Scan column
 {
 // Voltage for this column goes LOW
 digitalWrite(row_pins[row], LOW);
 for(int col = 0; col < Cols; col++) // Scan column
 {
 // Read voltage level from column
 // It’s Low when the button is pressed.
 boolean result = !digitalRead(col_pins[col]);

 // Button press is detected.
 // If previous button status is pressed, voltage
unchanged.
 if(result == HIGH && keys_status_last[row][col] ==
true)
 {
 Serial.print("Button ");
 Serial.print(keys[row][col]);
 Serial.println(" hold");
 }

86Duino
www.86duino.com

-7-

After the above sketch (code) is deployed to the EduCake, launch the

serial monitor and press some buttons on the matrix keyboard to see

the associated output to the serial monitor, as shown in the following

figure:

// Previous button status is not pressed.
// Indicates a new button press event is detected.
else if(result == HIGH && keys_status_last[row][col] ==
false)
 {
 Serial.print("Button ");
 Serial.print(keys[row][col]);
 Serial.println(" pressed");
 }

 // Current scan: Button press is not detected
 // Button previous status is pressed
 // Indicate the button just been released
 else if(result == LOW && keys_status_last[row][col]
== true)
 {
 Serial.print("Button ");
 Serial.print(keys[row][col]);
 Serial.println(" releaseed");
 }
 keys_status_last[row][col] = result; // Change
button status

}

 // Switch row voltage to high
 digitalWrite(row_pins[row], HIGH); }

 delay(20);

}

86Duino
www.86duino.com

-8-

In the beginning, there are code entries to configure and set the size

of columns and rows for the matrix keyboard and associate the “char

keys ()” with the button layout on the keyboard, initialize the

“keys_status_last()” array which is used to cache the previous button

status and initialize the “row_pins()” and “col_pins()” arrays to link

the pins from the matrix keypad to the I/O pins on the 86Duino

EduCake.

In the “setup()” function, the I/O pins associated with the

“col_pins()” array are configured as input with internal pullup

resistor, and the I/O pins associated with the “row_pins()” array are

configured as output. The last line of code configure the Baud Rate

for the serial port.

Please note the I/O pins associated with the col_pins() array are

configured as INPUT_PULLUP mode, and the pins associated with the

row_pins() array are configured as OUTPUT and initialized to HIGH.

Each of the pins associated with the row_pins() array is pull low to scan

and detect button status. When a button is pressed, a voltage LOW

condition is created, as shown in the following figure:

In the main program loop, there are two nested For loops. The first

For loop is used to scan the rows. The second For loop, nested within

the first For loop, is used to scan the columns, to read voltage status

associate with each of the button.

HIGH

LOW

HIGH

Digital Pin

86Duino
www.86duino.com

-9-

In the first For loop, as the code scan through each of the rows, the

following line of code set voltage LOW condition to the row being

scanned:

 digitalWrite(row_pins[row], LOW);

When the button is not pressed, the column which the button is

attached to is in voltage HIGH condition. When a button is pressed, it

bridges the column which the button is attached to the row currently

scan and cause voltage LOW condition to the column.

In the second For loop, it loops through the following line of code to

detect button press status for the button attached to each of the

column:

Boolean result = !digitalRead(col_pins[col]);

Then, the following line of code compare the current button status

with the previously scanned status to detect the following condition:

 Press and hold: When the current status indicates the button

is pressed and the previously scanned status is also pressed, it

indicates the button has been pressed continuously.

 New button pressed event: When the current status indicates

the button is pressed and the previously scanned status is not

pressed, it indicates a new button press event.

 Button released event: When the current status indicates the

button is not pressed and the previously scanned status is

pressed, it indicates the button was pressed and just released.

While it’s simple, the above button status scanning technique are

useful in different type of application, to enter information needed by

the program, to control program execution, such as code that control

a motor. When press and hold the button, keep the motor running.

When button is released, stop the motor.

86Duino
www.86duino.com

-10-

3. Second exercise: Using the Keypad library
In this exercise, we will talk about the keypad library, using the same

circuitry from the previous exercise.

When a button on the matrix keypad is pressed, it does not generation

a clean one time transition from voltage High from voltage Low.

Instead, a series of Debounce signal is generated. Depending on the

mechanical design and build quality for the matrix keypad, instead of a

single transition event from voltage high to voltage low when the

button is pressed, multiple transition events between voltage high and

voltage low will take place within a very short period of time before

settling the line signal stabilize at voltage low condition. Debounce

or De-bouncing is an expected condition, when working with

mechanical push button. Debounce makes it appear the button has

been pressed, released and pressed multiple times, rapidly within a

small fraction of second between each event, which can be in the 10ms

range or faster. It’s humanly not possible for us to repeatedly press

the button at such rapidly rate.

The Keypad library, used for this exercise, includes codes to handle

Debounce condition and help simply the code we write to read and

detect button press event. The Keypad library is available for

download from the following URL:

 http://playground.arduino.cc/uploads/Code/keypad.zip

To use the keypad library, unzip the downloaded file and copy the

complete “\Keypad” folder (including sub-folders and content) to

the “\<86Duino_Coding_xxx>\Libraries” folder, where

“\<86Duino_Coding_xxx>\” is the directory where you installed the

86Duino development IDE.

Use a text or source code editor to edit the “Keypad.h” header file,

in the “\Keypad” folder, find the [#include “WProgram.h”] entry

and change it to [#include <Arduino.h>]. Next, repeat the same task

on the “Key.h” header file, locate in the “\Keypad\utility” folder.

Launch 86Duino Coding IDE and enter the following code:

86Duino
www.86duino.com

-11-

#include <Keypad.h>

const byte Rows = 4; // number of rows in the matrix
const byte Cols = 4; // number of column in the matrix
// Associate keypad buttons to the matrix
char keys[Rows][Cols] =
{
 {'1','2','3','A'},
 {'4','5','6','B'},
 {'7','8','9','C'},
 {'*','0','#','D'}
};
// Associate EduCake I/O pins to the matrix

byte row_pins[Rows] = {9, 8, 7, 6}; // 列 0~3

byte col_pins[Cols] = {5, 4, 3, 2}; // 行 0~3

// Keypad lib object
Keypad keypad4X4 = Keypad(makeKeymap(keys), row_pins,
col_pins, Rows, Cols);
void setup(){
Serial.begin(115200);
}
void loop(){

 if(keypad4X4.getKeys())
 {
 // Check each of the button within the 4x4 keypad object
 for(int i = 0; i < LIST_MAX; i++)
{
 // If button status changed, output to serial monitor
 if(keypad4X4.key[i].stateChanged)
 {
 Serial.print("Button ");
 // output character symbol for the pressed button
 // to serial monitor
 Serial.print(keypad4X4.key[i].kchar);
 switch(keypad4X4.key[i].kstate)
 {
 case PRESSED:
 Serial.println(" pressed.");
 break;
 case HOLD:
 Serial.println(" hold.");
 break;
 case RELEASED:
 Serial.println(" released.");
 break;
 case IDLE:

86Duino
www.86duino.com

-12-

Compile and upload the above sketch to the EduCake and launch the

serial monitor.

As you press a button on the keypad, you can see corresponding

output from the serial monitor match the pressed key, similar to the

example in the first exercise.

However, in addition to the matrix size declaration, associating button

symbol to the matrix array and I/O pins from the EduCake to the

matrix keypad that are similar to the code in the first exercise, the

[#include <Keypad.h>] statement is added along with the following

line of code that create the Keypad class object to take advantage of

the function provided by the Keypad library, enabling us to simplify

the code needed to work with matrix keypad:

[Keypad keypad4x4 = Keypad(makeKeymap(keys), row_pins, col_pins,

Rows, Cols);]

The only code needed in the setup() section is to initialize the serial

port.

In the main program loop, after using the “ keypad4x4.getKeys() ”

function to read button status from the keypad object, the codes

within the following For loop iterate through the keypad object to read

the status for each of the button and output to the serial monitor:

For(int i = 0; i < LIST_MAX; i++)

Within the above For loop, the Keypad library provide the following

functions that help simplify the code:

- The “ keypad4x4.key[i].stateChanged “ function is used to detect

when the status of the button has changed.

 Serial.println(" idle.");
 }
 }
 } // end for
 } // end if (keypad4X4.getKeys())

 delay(20);

}

86Duino
www.86duino.com

-13-

- The “ keypad4x4.key[i].kchar ” function is used to identify which

button on the keypad is currently being processed.

- The “ keypad4x4.key[i].kstate “ function is used to read the

button status.

In addition to detect which button on the keypad is pressed, the code

in this exercise also identify the following conditions:

 The button is pressed.

 The button is pressed and hold (the button was pressed

during the previous scan cycle).

 The button is released (the button was pressed during the

previous scan cycle).

 Idle (Button is not pressed).

Without the help from the Keypad library, it requires much more

lengthy and complicated codes to accomplish the same result.

86Duino
www.86duino.com

-14-

4. Third exercise: Keypad Library & 8x8 LED Matrix
For the exercise in this section, the MAX7219+8x8 LED matrix is used

to demonstrate a more complex application scenario, as shown in the

following figure:

In an earlier application note, we’ve talked about matrix LED, using

the MAX7219+8x8 module. Since working with matrix LED is fairly

common for Arduino and 86Duino developer, it’s good to compose

a library that encapsulate common function to help simplify

application development.

Let’s work through the following steps to create the LEDmat8 library

to support the MAX7219+8x8 matrix LED module:

1. Create a new folder and name the folder “LEDmat8” under

the following directory:

\86Duino_Coding_xxx_Win\Libraries

Note: “\86Duino_Coding_xxx_Win” is the directory where

you installed the 86Duino development tool, 86Duino Coding

IDE, where “xxx” is the installed version.

86Duino
www.86duino.com

-15-

2. In the newly created “\LEDmat8” folder, create a new file,

name the file as “LEDmat8.h” and enter the code from the

following listing into this file:

3. In the “\LEDmat8” folder, create a new file, name the file as

“LEDmat8.cpp” and enter the code from the following listing

into this file:

#ifndef LEDMAT8_H
#define LEDMAT8_H

#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
//#include "WProgram.h"
#include <Arduino.h>
#endif

 // MAX7219 register
#define max7219_REG_noop 0x00
#define max7219_REG_digit0 0x01
#define max7219_REG_digit1 0x02
#define max7219_REG_digit2 0x03
#define max7219_REG_digit3 0x04
#define max7219_REG_digit4 0x05
#define max7219_REG_digit5 0x06
#define max7219_REG_digit6 0x07
#define max7219_REG_digit7 0x08
#define max7219_REG_decodeMode 0x09
#define max7219_REG_intensity 0x0a
#define max7219_REG_scanLimit 0x0b
#define max7219_REG_shutdown 0x0c
#define max7219_REG_displayTest 0x0f

class LEDmat8{
public:
 LEDmat8(int DIN, int LOAD, int CLOCK);
 void Init();
 void DrawLED(byte *LED_matrix);
 //~LEDmat8();
 void SPI_SendByte(byte data);
 void MAX7219_1Unit(byte reg_addr, byte reg_data);

private:
 int DIN_pin;
 int LOAD_pin;
 int CLOCK_pin;
};

86Duino
www.86duino.com

-16-

#include <LEDmat8.h>

LEDmat8::LEDmat8(int DIN, int LOAD, int CLOCK)
{

 DIN_pin = DIN;
 LOAD_pin = LOAD;
 CLOCK_pin = CLOCK;
}

void LEDmat8::Init()
{
 pinMode(DIN_pin, OUTPUT);
 pinMode(CLOCK_pin, OUTPUT);
 pinMode(LOAD_pin, OUTPUT);

 digitalWrite(CLOCK_pin, HIGH);

 // Initialize MAX7219 register
 MAX7219_1Unit(max7219_REG_scanLimit, 0x07);
 MAX7219_1Unit(max7219_REG_decodeMode, 0x00);
 MAX7219_1Unit(max7219_REG_shutdown, 0x01);
 MAX7219_1Unit(max7219_REG_displayTest, 0x00);

 for(int i = 1; i <= 8; i++) { // Turn off all LED
 MAX7219_1Unit(i, 0);
 }
 // Set brightness range, 0x00 ~ 0x0f
 MAX7219_1Unit(max7219_REG_intensity, 0x0f);

}

// Draw the whole LED display
void LEDmat8::DrawLED(byte *LED_matrix)
 byte i = 8;
 byte mask;

 while(i > 0)
 {
 mask = (0x01 << (i - 1)); // Bitmask, starting from
left
 digitalWrite(CLOCK_pin, LOW); //
 if (data & mask) { // Use Bitmask to determine
corresponding bit
 digitalWrite(DIN_pin, HIGH); // If it’s 1,DIN
output HIGH
 }
 else{
 digitalWrite(DIN_pin, LOW); // If it’s 0, DIN output
LOW

86Duino
www.86duino.com

-17-

Launch 86Duino Coding IDE and enter the following code:

 }
 digitalWrite(CLOCK_pin, HIGH); //
 i = i - 1; // move to next bit
 }
}

// Control a MAX7219 module
void LEDmat8::MAX7219_1Unit (byte reg_addr, byte
reg_data)
{
 // Before sending data, set LOAD_pin to LOW
 digitalWrite(LOAD_pin, LOW);

 SPI_SendByte(reg_addr); // Send register address
 SPI_SendByte(reg_data); // send data

 // After data is sent, set LOAD_pin to HIGH
 digitalWrite(LOAD_pin, HIGH);
}

#include <LEDmat8.h>
#include <Keypad.h>

const byte Rows = 4; // number of rows
const byte Cols = 4; // number of columns
// Corresponding symbols mapped to the keypad
char keys[Rows][Cols] =
{
 {'1','2','3','A'},
 {'4','5','6','B'},

 {'7','8','9','C'},
 {'*','0','#','D'}
};
// Associate EduCake I/O Pin# to the matrix
byte row_pins[Rows] = {9, 8, 7, 6}; // Row 0~3
byte col_pins[Cols] = {5, 4, 3, 2}; // Column 0~3

// Keypad library object
Keypad keypad4X4 = Keypad(makeKeymap(keys), row_pins,
col_pins, Rows, Cols);

// LED module control pins
int DIN_pin = 10;
int LOAD_pin = 11;
int CLOCK_pin = 12;
};
// Associate EduCake I/O Pin# to the matrix

86Duino
www.86duino.com

-18-

byte row_pins[Rows] = {9, 8, 7, 6}; // Row 0~3
byte col_pins[Cols] = {5, 4, 3, 2}; // Column 0~3

// Keypad library object
Keypad keypad4X4 = Keypad(makeKeymap(keys), row_pins,
col_pins, Rows, Cols);

// LED module control pins
int DIN_pin = 10;
int LOAD_pin = 11;
int CLOCK_pin = 12;

// 8X8 LED matrix object
LEDmat8 LedMatrix = LEDmat8(DIN_pin, LOAD_pin,
CLOCK_pin);

byte LED_Data_8X8[8] = { // data matrix for LED display
 B00000000,
 B00000000,
 B00000000,
 B00000000,
 B00000000,
 B00000000,
 B00000000,
 B00000000
};

void ClearLED_Data() // Clear LED display data
{
 for(int i = 0; i < 8; i++)
 {
 LED_Data_8X8[i] = B00000000;
 }
}

void setup () {
 LedMatrix.Init();
 delay(1000);

 }

void loop () {
 ClearLED_Data();

 // check keypad status
 keypad4X4.getKeys();

 // Check each of the item in the keypad4X4 array
 for(int i = 0; i < LIST_MAX; i++)
 {

86Duino
www.86duino.com

-19-

 // Check whether the button is pressed
 if(keypad4X4.key[i].kstate == PRESSED)// HOLD
 {

 // Update display corresponding to the key pressed
 // “D” correspond to top-left corner
 // “1” correspond to lower-right corner
 switch(keypad4X4.key[i].kchar)
 {
 case '1': // LED r3 c3
 LED_Data_8X8[7] |= B11000000;
 LED_Data_8X8[6] |= B11000000;
 break;

 case '2': // LED r3 c2
 LED_Data_8X8[5] |= B11000000;
 LED_Data_8X8[4] |= B11000000;
 break;

 case '3': // LED r3 c1
 LED_Data_8X8[3] |= B11000000;
 LED_Data_8X8[2] |= B11000000;
 break;

 case 'A': // LED r3 c0
 LED_Data_8X8[1] |= B11000000;
 LED_Data_8X8[0] |= B11000000;
 break;

 case '4': // LED r2 c3
 LED_Data_8X8[7] |= B00110000;
 LED_Data_8X8[6] |= B00110000;

 break;

 case '5': // LED r2 c2
 LED_Data_8X8[5] |= B00110000;
 LED_Data_8X8[4] |= B00110000;
 break;

 case '6':// LED r2 c1
 LED_Data_8X8[3] |= B00110000;
 LED_Data_8X8[2] |= B00110000;
 break;

 case 'B': // LED r2 c0
 LED_Data_8X8[1] |= B00110000;
 LED_Data_8X8[0] |= B00110000;
 break;

86Duino
www.86duino.com

-20-

 case '7': // LED r1 c3
 LED_Data_8X8[7] |= B00001100;
 LED_Data_8X8[6] |= B00001100;
 break;

 case '8': // LED r1 c2
 LED_Data_8X8[5] |= B00001100;
 LED_Data_8X8[4] |= B00001100;
 break;

 case '9': // LED r1 c1
 LED_Data_8X8[3] |= B00001100;
 LED_Data_8X8[2] |= B00001100;
 break;

 case 'C': // LED r1 c0
 LED_Data_8X8[1] |= B00001100;
 LED_Data_8X8[0] |= B00001100;
 break;

 case '*': // LED r0 c3
 LED_Data_8X8[7] |= B00000011;
 LED_Data_8X8[6] |= B00000011;

 break;

 case '0': // LED r0 c2
 LED_Data_8X8[5] |= B00000011;
 LED_Data_8X8[4] |= B00000011;
 break;

 case '#': // LED r0 c1
 LED_Data_8X8[3] |= B00000011;
 LED_Data_8X8[2] |= B00000011;
 break;

 case 'D': // LED r0 c0
 LED_Data_8X8[1] |= B00000011;
 LED_Data_8X8[0] |= B00000011;
 break;

 default:
 break;
 }
 }
 } // end for

 // Draw LED display
 LedMatrix.DrawLED(LED_Data_8X8);

delay(50);

}

86Duino
www.86duino.com

-21-

After the above code is compiled and uploaded, you can press a

button on the keypad to turn on the corresponding LED.

The above example uses the Keypad library and 8x8 LED application

code from a previous application note, encapsulate the code from the

8x8 LED application into the LEDmat8 library.

The variable declaration in the beginning section is the same as in the

2nd exercise with the following variables for the LED matrix added:

 LED_Data_8x8[8] byte array to hold LED display data.

 ClearLED_Data() function to clear data in the LED_Data_8x8[]

byte array.

 LedMatrix variable that represent the LED matrix object.

Wihin the setup() function, the LedMatrix.Init() function is called to

initialize the LED matrix, looping through the LED matrix and call the

ClearLED_Data() function to clear data. The keypad4x4.getKeys()

function is called to retrieve update keypad button status. Then, the

keypad4x4.key[i].kstate function inside a For loop to read button

status for each of the button, follow by a series of switch statements to

set the corresponding display status to the LED_Data_8x8[] array. The

LedMatrix.DrawLED() function is call last within the Setup() function to

draw the LED display (turning on LED corresponding to the button

pressed).

The LED display corresponding to the button in the above example is

based on the orientation of the matrix keypad and LED matrix, as

shown in the figure below:

86Duino
www.86duino.com

-22-

If the LED display on the LED matrix display does not correspond to

the button press on the keypad, you need to change the orientation of

the keypad, LED matrix or modify the code to get the expected result.

You can experiment and change the button press condition in the

following statement to see different result on the LED matrix:

- If (keypad4x4.key[i].kstate == PRESSED)

123A

456B

789C

*0#D

MAX7219

(0, 0)

(3, 3)

上

LED_Data_8X8[7]

86Duino
www.86duino.com

-23-

5. Fourth exercise: Whac-A-Mole Game using Matrix Keypad & 8x8

LED Modules

In this last exercise, we will create a whac-a-mole game using the same

circuitry with matrix keypad and 8x8 LED modules.

Launch 86Duino Coding IDE and enter the code from the following

listing:

#include <LEDmat8.h>
#include <Keypad.h>

const byte Rows = 4; // declare number of rows for the matrix
const byte Cols = 4; // declare number of columns for the matrix
// Associate keypad symbols to the keys[] array
char keys[Rows][Cols] =
{
 {'1','2','3','A'},
 {'4','5','6','B'},
 {'7','8','9','C'},
 {'*','0','#','D'}
};
// Associate EduCake I/O pins to the keypad
byte row_pins[Rows] = {9, 8, 7, 6}; // rows 0~3
byte col_pins[Cols] = {5, 4, 3, 2}; // columns 0~3

// Keypad lib object
Keypad keypad4X4 = Keypad(makeKeymap(keys), row_pins, col_pins,
Rows, Cols);

// Define LED module control pins
int DIN_pin = 10;
int LOAD_pin = 11;
int CLOCK_pin = 12;

// 8X8 LED matrix object
LEDmat8 LedMatrix = LEDmat8(DIN_pin, LOAD_pin, CLOCK_pin);

// variables for the game
int score = 0;
long gameTime = 0;
boolean runGame = false; // Variable to indicate active game
int loopCount = 0;
#define DELAY_TIME 50 // time delay between loop
#define LOOPCOUNT_MAX 30 //
#define GAME_TIME 30 //
#define MOLE_NUM_MAX 6 // max number of mole at same time

86Duino
www.86duino.com

-24-

byte LED_Data_8X8[8] = { // LED matrix display data
 B00000000, // Left -> Right = row 1
 B00000000,
 B00000000,
 B00000000,
 B00000000,
 B00000000,
 B00000000,
 B00000000 // Left -> Right = row 8
};

// mole location array, [column] [row]
boolean Mole_Data[4][4] = {
 {0,0,0,0},
 {0,0,0,0},
 {0,0,0,0},
 {0,0,0,0}
};

// keypad array [column] [row]
boolean Key_Data[4][4] = {
 {0,0,0,0},
 {0,0,0,0},
 {0,0,0,0},
 {0,0,0,0}
};

void ClearLED_Data() // Clear LED display
{
 for(int i = 0; i < 8; i++)
 {
 LED_Data_8X8[i] = B00000000;
 }
}

void ClearMoleData() { // Clear mole array data
 for(int i = 0; i < 4; i++) {
 for(int j = 0; j < 4; j++) {
 Mole_Data[i][j] = false;
 }
 }
}

void ClearKeyData() { // Clear keypad array data
 for(int i = 0; i < 4; i++) {
 for(int j = 0; j < 4; j++) {
 Key_Data[i][j] = false;
 }
 }
}

86Duino
www.86duino.com

-25-

void GameStart () { // Start game
 ClearMoleData(); // initialize mole display
 ClearKeyData(); // initialize keypad data
 runGame = true; // set game to active mode
 score = 0; // Initialize game score
 gameTime = millis(); // initialize game time.
}

void GameEnd () {// Stop game, output game score to serial
 // monitor

Serial.println("---")
;
 Serial.println("Game end!");
 Serial.print(" Total Score : ");Serial.println(score);
 Serial.println(" - Press 'S' or 'R' to play again.");

Serial.println("---")
;

 // display that indicate end of the game
 LED_Data_8X8[0] = B01111110;
 LED_Data_8X8[1] = B10000001;
 LED_Data_8X8[2] = B10010101;
 LED_Data_8X8[3] = B10100001;
 LED_Data_8X8[4] = B10100001;
 LED_Data_8X8[5] = B10010101;
 LED_Data_8X8[6] = B10000001;
LED_Data_8X8[7] = B01111110;

runGame = false;

 }

void setup () {

 LedMatrix.Init();
 randomSeed(analogRead(0));// Initialize random number generator

 Serial.begin(115200);

 delay(4000);

 Serial.println("--");
 Serial.print(" You Have ");
 Serial.print(GAME_TIME);
 Serial.println(" Seconds To Play Each Game.");
 Serial.println(" - Press 'S' To Start Game.");
 Serial.println(" - Press 'R' To Reset Game.");
 Serial.println(" - Press 'E' To End Game.");
 Serial.println("--");

}

86Duino
www.86duino.com

-26-

void loop () {
 loopCount++;
 if(loopCount>LOOPCOUNT_MAX){
 loopCount = 0;
}

// 檢查 COM PORT 傳入的訊息
if(Serial.available()){
 char ch = Serial.read();

 // Start the game when the S key is pressed
 if(ch == 's' || ch == 'S') {
 Serial.println("--");
 Serial.println("Game is started!");
 Serial.println("--");

GameStart();

}

 // When R is pressed, restart the game
 else if(ch == 'r' || ch == 'R') {
 Serial.println("--");

 Serial.println("Game is reset!");
 Serial.println("--");

GameStart();

}

 // When E is pressed, end the game
 else if(ch == 'e' || ch == 'E') {
 GameEnd();

}

 }

86Duino
www.86duino.com

-27-

 // Check elapsed game time
 if(runGame){

long time = millis() - gameTime; // elapsed game time

// Check whether max game time elapsed

 if(time < GAME_TIME*1000) {
 // Randomly generate position for mole to appear
 // Refresh mole data after reaching max loopCount
 if(loopCount == LOOPCOUNT_MAX) {
 ClearMoleData();
 // randomly generate the number of mole to appear
 long mole_num = random(0, MOLE_NUM_MAX+1);
 for(int i = 0; i < mole_num; i++) {
 // random number between 0 to 4
 long i_num = random(0,4);
 // random number between 0 to 4
 long j_num = random(0,4);
 // Serial.print(i_num);
 // Serial.print(",");
 // Serial.println(j_num);
 Mole_Data[i_num][j_num] = true;
 }
 }

 // Read button status from keypad
 // Compare keypad status with mole location array
 // and adjust game score
 ClearLED_Data(); // Clear LED data before update
 ClearKeyData(); // Clear key data before update
 keypad4X4.getKeys(); // update keypad status

 // check each button in the keypad4X4 array
 for(int i = 0; i < LIST_MAX; i++)
 {
 // Check whether button is pressed
 if(keypad4X4.key[i].kstate == PRESSED)
 {

 // update array data based on key pressed
 // button “D” is at upper-Left corner
 // button “1” is at lower-right corner
 switch(keypad4X4.key[i].kchar)
 {

 case '1':// LED r3 c3

 Key_Data[3][3] = true;

 break;

 case '2':// LED r3 c2

 Key_Data[3][2] = true;

 break;

 case '3':// LED r3 c1

 Key_Data[3][1] = true;

 break;

86Duino
www.86duino.com

-28-

 case 'A':// LED r3 c0

 Key_Data[3][0] = true;

 break;

 case '4':// LED r2 c3

 Key_Data[2][3] = true;

 break;

 case '5':// LED r2 c2

 Key_Data[2][2] = true;

 break;

 case '6':// LED r2 c1

 Key_Data[2][1] = true;

 break;

 case 'B':// LED r2 c0

 Key_Data[2][0] = true;

 break;

 case '7':// LED r1 c3

 Key_Data[1][3] = true;

 break;

 case '8':// LED r1 c2

 Key_Data[1][2] = true;

 break;

 case '9':// LED r1 c1
 Key_Data[1][1] = true;

 break;

 case 'C':// LED r1 c0
 Key_Data[1][0] = true;
 break;

 case '*':// LED r0 c3
 Key_Data[0][3] = true;
 break;

 case '0':// LED r0 c2
 Key_Data[0][2] = true;
 break;

86Duino
www.86duino.com

-29-

 case '#':// LED r0 c1
 Key_Data[0][1] = true;
 break;

 case 'D':// LED r0 c0
 Key_Data[0][0] = true;
 break;

 default:
 break;
 }
 }
 }// end for

 // Compare data between keypad and mole array
 for(int i = 0; i < 4; i++) { // Row
 for(int j = 0; j < 4; j++) { // Column
 // When button pressed and mole appeared location match
 // Clear location data in the mole array
 // and increase game score by 1
 if(Mole_Data[i][j] == true && Key_Data[i][j] == true) {
 Mole_Data[i][j]= false;
 score++;
 Serial.print(" >> scored! score :");
Serial.println(score);

 }
 }

 }

 // Use mole array as display data for the LED matrix
 // to show location where the mole has been whac

 for(int i = 0; i < 4; i++) { // 列

 for(int j = 0; j < 4; j++) { // 行
 if(Mole_Data[i][j] == true) {
 byte data = B00000011;
 data = data << (i*2);
 LED_Data_8X8[j*2] |= data;
 LED_Data_8X8[j*2+1] |= data;
 }// end if
 }
 }
 // Draw display to LED matrix
 LedMatrix.DrawLED(LED_Data_8X8);
 }
 else{ // Game time is up, end game
 GameEnd();
 // Draw display to LED matrix
 LedMatrix.DrawLED(LED_Data_8X8);
 }
 }

 delay(DELAY_TIME);

 }

86Duino
www.86duino.com

-30-

Compile and upload the sketch to EduCake. Then, launch the serial

monitor. As the code execute, the serial monitor display information

showing how to start, reset and end the game. Each game session

goes on for 30 seconds. When you start the game, the serial monitor

display score for the game as you play, as shown in the following

figure:

The code for this exercise includes variables such as「score」to keep

track of game score,「gameTime」to keep track of elapsed game time,

「runGame」to indicate whether a game is active and「loopCount」to

keep track of number of game loop and update data accordingly. In

addition to these variables, the following #define statements were

used to define game parameters:

 #define DELAY_TIME (To define the delay time between loop)

 #define LOOPCOUNT_MAX (To define the maximum loop before

refresh the game)

86Duino
www.86duino.com

-31-

 #define MOLE_NUM_MAX (To define max number of Mole that can

appear at the same time)

The「ClearMoleData()」,「ClearKeyData()」,「GameStart ()」and「GameEnd

()」functions are used to control game flow.

Within the「setup ()」function, to support the random variables needed for

the game, the 「randomSeed(analogRead(0));」statement is used to

initialize random variable generator. The「analogRead(0)」function, used

as the parameter for the randomSeed() function, is link to an I/O pin that

is not connected, to insure randomness.

Following is the flow chart for the game:

loop()

loopCount每次加1
如果超過LOOPCOUNT_MAX則歸零

檢查Serial Port
傳進來的資料

開始遊戲

重新開始遊戲

結束遊戲

如果收到S

如果收到R

如果收到E

檢查遊戲進行時間

如果loopCount到達最大值，則產生亂
數地鼠地圖

還沒超過 GAME_TIME*1000

已超過

偵測按鍵狀態，並建立新的按鍵地圖

檢查按鍵地圖與地鼠地圖，當按鍵按下
的地方符合地鼠出現位置，則消除地鼠，
分數+1

結束遊戲

依據消除後的地鼠地圖繪製畫面，
將4x4的地圖資料擴充到8x8 LED 矩陣
所需資料

繪製LED圖案

檢查遊戲執行狀態
runGame 為 true

runGame 為 false

86Duino
www.86duino.com

-32-

Following is the flow to check button pressed on the keypad to the

Mole matrix array:

To randomly generate moles to appear on the Mole matrix array, we

first randomly generate N number of mole to appear. Then,

randomly assign these moles to the Mole matrix array.

Based on the flow in the previous figure, display on the LED matrix is

used to represent the location where the mole appear. To make the

game more interesting, you can further expand the game by adding

more complex components, such as servo to raise and lower the moles,

7 segment LEDs to display game progress, audio output when a mole

is whac and etc.

The game complexity can be changed by changing the value for

LOOPCOUNT_MAX (which affect how quickly the mole display data is

updated), MOLE_NUM_MAX (which control the max number of moles

Mole_Data[4][4]
地鼠地圖

Key_Data[4][4]
按鍵地圖 一對一檢查兩地圖

相同位置，如果都
是1，則把地鼠地圖
此位置的數值=0，
同時得分數值+1

新地鼠地圖

(0, 0)

(3, 3)

(0, 0)

(3, 3)

LED_Data_8X8[8]
用在LED顯示

擴充資料為8x8

123A

456B

789C

*0#D

實際按鍵符
號對應位置

86Duino
www.86duino.com

-33-

that can appear at the same time) and gameTime (which control

available time to play the game).

