
86Duino
www.86duino.com

-1-

EduCake and Infrared Transceiver

1. Infrared Introduction
In previous chapters, we covered interfacing 86Duino EduCake to sensors and

other device using UART Serial Port, I²C and etc. which require physical wire

connection. In this chapter, we will explore a wireless connectivity option using

infrared with EduCake and work through exercises to perform transmitting and

receiving function.

Infrared is a part of the electromagnetic spectrum and is the dominating

technology used in remote control for TV, DVD players, audio system and remote

control for variety of other consumer and commercial products.

Light spectrum in the range of 400nm to 700nm is visible to human. Just below

the visible 400nm spectrum is Ultraviolet (UV), ranging from 10nm to 400nm.

Infrared (IR) is the light spectrum just above 700nm, ranging from 700nm to

1mm, as shown in Fig-1, electromagnetic spectrum diagram:

86Duino
www.86duino.com

-2-

Fig-1: Electromagnetic spectrum

Within the IR spectrum, there are different categories of IR, such Near-infrared,

Short-wavelength infrared, Mid-wavelength infrared, Long-wavelength infrared

and Far-infrared. To learn more about infrared and electromagnetic spectrum,

visit the following URLs:

http://en.wikipedia.org/wiki/Electromagnetic_radiation

http://en.wikipedia.org/wiki/Visible_spectrum

http://en.wikipedia.org/wiki/Infrared

http://en.wikipedia.org/wiki/Ultraviolet

Although IR is not visible to us, it’s all around us. In addition to the common

remote control for TV, audio entertainment system, home appliances and toys,

IR is also used in imaging and other type of application.

The content in this chapter talks about using IR as wireless communication link to

transmit and receive data and control signals, using IR transmitting and receiving

devices as shown in Fig-2 and Fig-3.

Fig-2: Infrared transmitter

Comparing to Infrared transmitter, Infrared receiver construction is more

complex, which includes signal processing circuitry in addition to the Infrared

86Duino
www.86duino.com

-3-

receiving mechanism. Infrared receiver typically has 3 signal pins, power-input,

ground and signal-output, as shown in Fig-3.

Fig-3: Infrared receiver

There are many different sources of electromagnetic waves within the Infrared

range around us, to avoid interference and insure the Infrared receiver can

receive the correct information, the transmitter modulate the transmission signal

at a specific frequency. On the receiving end, a signal processing circuitry is

used to filter unwanted signal and go through a demodulation step to interpret

the received data. Fig-4 below demonstrate a typical Infrared transmit and

receive scenario.

Fig-4: Typical Infrared transmit and receive process.

In order for the transmitting and receiving function to work, as shown in Fig-4,

both the Infrared transmitter and receiver must function in the same

modulation/demodulation frequency. Here are some of the common

modulation/demodulation frequencies in use: 36 KHz, 38 KHz, 40 KHz & 56 KHz.

Please note the modulation/demodulation frequency is different from the

electromagnetic spectrum frequency. Modulating the IR frequency help the

接收端
MCU

電源

IR 接收器

發射端
MCU

IR 發射器

特定頻率紅外線訊號

環境紅外線干擾

接收器輸出訊號

原始資料

編碼成特定頻率

86Duino
www.86duino.com

-4-

receiver distinguish the transmitter’s signal from other infrared interference,

where the receiver demodulate received signal using the same frequency as the

transmitter. In addition to the modulation/demodulation process, some form

of communication protocol can be implemented to further enhance the ability to

communication more complex data and commands, by simulating different data

bit’s on/off condition.

Using a Sony Infrared remote control as example, which uses 40 KHz as the

modulating carrier frequency. When one of the command button is pressed, it

causes the remote control to transmit modulated Infrared signal with different

data sequence that enable the receiver to identify which button is pressed, such

as the modulated Infrared signal shown in Fig-5.

Fig-5: Infrared signal modulated around a predefined communication protocol

To learn more about Infrared communication protocol and related subjects, visit

the following URLs:

http://www.righto.com/2010/03/understanding-sony-ir-remote-codes-lirc.html

http://users.telenet.be/davshomepage/sony.htm

http://www.cypress.com/？docID=46755

http://www.sbprojects.com/knowledge/ir/sirc.php

For the exercises in this chapter, we use an 86Duino EduCake with RPM6938, a

low-cost 920nm Infrared receiver, which you can easily find in the DIY maker

market, as shown in Fig-6.

X

START 訊號
2.4ms ON/0.6ms OFF

訊號1
1.2ms ON/0.6ms OFF

訊號0
0.6ms ON/0.6ms OFF

0 111110 0 0 0 012 bits 格式指令 Start

86Duino
www.86duino.com

-5-

Fig-6: Infrared receiver

According to the datasheet for the RPM6938 chip, Vcc requires 5V power source,

this chip has an effective horizontal receiving angle spanning 70 degree and

effective vertical receiving angle spanning 60 degree, with the sensor’s output

signal set to High when no signal is detected and set to Low when signal is

present. For this receiver, carrier frequency at 37.8 KHz yield the best receiving

signal, and is able to receive signal at frequency range slightly higher or lower

than 37.8 KHz.

There are different variety of Infrared receiver in the market. If you are

purchasing an Infrared receiver different from RPM6938, in addition to the

carrier frequency, you need to pay attention to the receiver type. The output

signal for some of the receiver is reversed. There are some receiver do not have

86Duino
www.86duino.com

-6-

built in capability to demodulate the received signal. To avoid unnecessary

headache, check the datasheet carefully when selecting an Infrared receiver.

Wiring standard for Infrared transmitter is similar to LED, the longer leg is the (+)

positive signal and the shorter leg is the (-) negative signal.

86Duino
www.86duino.com

-7-

2. First exercise: Testing Infrared function

In this first exercise, we will work through simple steps to test Infrared transmit

and receive function without coding, to check and make sure the components

are working with circuitry as shown in the following figure:

The infrared receiver’s power source and ground are connected to +5V and GND

on the EduCake. The infrared receiver’s signal output pin is connected to the

LED’s negative pin. The LED’s positive pin is connected to +5V on EduCake with a

220 Ohm resistor in series. When the infrared receiver does not detect any

signal, the signal output pin is HIGH, which will keep the LED in off condition.

When signals are detected, the receiver’s signal output pin goes LOW and turn

on the LED. Using one of the remote control you have for your TV or home

entertainment system, which typically transmit Infrared signals that modulate

around 38 KHz. As the infrared receiver, in the above circuit, receives signals

transmitted by the remote control, the LED will blink as you press the buttons,

which provides a way for us to check and confirm the infrared receiver is

functioning as expected.

Instead of using a remote control to transmit infrared signal, we can use an

infrared transmitter (which physically looks similar to an LED) to accomplish

similar objective, to check and confirm the infrared receiver is functioning, using

the following circuit along with a simple program.

86Duino
www.86duino.com

-8-

In order for the receiver to detect its signals, the infrared transmitter must

transmit signal at the same modulation frequency as the receiver, which is 38

KHz for this example, as shown in the following frequency waveform.

To generate the above waveform, we can use the digitalWrite() function with the

following circuit:

In the above circuit, an infrared transmitter is added to the previous circuit.

The transmitter’s positive pin is connected to pin 10 on the EduCake and the

negative pin is connected to GND with a resistor in series. Since infrared

transmitter requires higher current than an LED to function, a 100 Ohm resistor is

connected in series instead of 220 Ohm resistor typically use for an LED.

From the 86Duino Coding IDE, enter the following codes:

86Duino
www.86duino.com

-9-

In the above code, within the void SendIR() function, digitalWrite()

function is called with delayMicroseconds() to general PWM waveform.

Cycle for a 38 KHz waveform is about 26 µs, which takes 13 µs for the signal to go

from HIGH to LOW or LOW to HIGH.

When you compile and run the above code, it modulate and transmit infrared

signal at 38.4 KHz every other second, and causes the LED in the infrared

receiver’s circuit to blink.

The above code sample demonstrated a simple approach to test infrared

transmitter and receiver. Using hardware generated PWM waveform, we can

develop similar code to generate more granular and precise signals. As part of

the 86Duino EduCake development environment, the TimerOne library is

provided which includes a collection of routines for configuring the 86Duino’s

internal high-precision timer and provides a way to easily control the I/O pin’s

PWM output signals.

Using the following sample codes, you can produce hardware generated PWM

signal, which is more precise than software generated signal:

int IR_pin = 10;

void SendIR()
{
 for(int i = 0; I < 800; i++)
 {
 // ON + OFF 26us ~= 38.4kHz
 digitalWrite(IR_pin, HIGH);
 delayMicroseconds(13);

 digitalWrite(IR_pin, LOW);
 delayMicroseconds(13);
 }
 Serial.println("IR send.");
}

void setup() {
 Serial.begin(115200);

 pinMode(IR_pin, OUTPUT);
}

void loop() {
 SendIR();
 delay(1000);
}

86Duino
www.86duino.com

-10-

To use the TimerOne library, the 「#include "TimerOne.h"」statement

is needed. In the setup() function, the「Timer1.initialize(period);」

function is called to initialize the Timer object, with parameter (period) in

microsecond that represent timer cycle.

In the「void SendIR()」function, the「Timer1.pwm(IR_pin, 512,

26);」function is called to configure IR pin’s PWM signal, where the 2 values

512 and 26 configure the IR pin’s PWM signal 26 µs at 50% duty cycle, with 20ms

PWM duration. The「Timer1.disablePwm(IR_pin);」function is called

to disable IR pin’s PWM output. As the SendIR() function is called in loop()

function with 1000 ms (1 second) delay in between.

Similar to the code in the previous section, the above code switch on Infrared

transmitter and then off for 1 second continuously causing the LED on the

receiver circuit to blink.

#include "TimerOne.h"
int IR_pin = 10;
void SendIR()
{
 Timer1.pwm(IR_pin, 512, 26);// pin, duty (512=50%),
period(us)
 delay(20);
 Timer1.disablePwm(IR_pin);
 delay(20);
 Serial.println("IR send.");
}
void setup() {
 Serial.begin(115200);
 pinMode(IR_pin, OUTPUT);
 Timer1.initialize(26);// TimerOne initialize,
period(us)
}
void loop() {
 SendIR();
 delay(1000);
}

86Duino
www.86duino.com

-11-

3. Second exercise: Understanding Infrared Communication

In the previous section, we provided brief introduction about infrared and a

simple exercise to test infrared receiver function. For this second exercise, we

are going to talk about infrared communication format and protocols, using the

following circuit:

The above circuit is based on the same circuit from the previous exercise, with a

new connection added to connect the infrared receiver’s signal output to

EduCake’s digital pin #2, to capture data from the infrared receiver.

From the 86Duino Coding IDE, enter the following codes for the exercise:

int IR_rec_pin = 2;// IR receiver signal output
int IRstate = LOW;// IR receiver output pin bit state
int IRstate_last = LOW;// Last IR receiver output pin bit state
long int time_last = 0;// Last IR state changed time

boolean isIdle = true;// Idling, waiting for IR signal
const long int durationMax = 10000;// inactive time to idle in µs
const long int durationMin = 400;// min. inactive duration in µs

86Duino
www.86duino.com

-12-

After compile and uploading the above code to EduCake, launch Serial Monitor

from the IDE. Similar to the first exercise in this application note to test

infrared receiver’s function, using one of the remote control you have for your

TV or home entertainment system, point the remote control toward the infrared

receiver circuit and randomly press some buttons to transmit IR signal. When the

remote control transmit IR signal, the signal is modulated around the 38 KHz

carrier frequency.

As the IR signal from the remote control is detected by the infrared receiver, you

can see series of output from the Serial Monitor, where positive value represent

the signal is received when the output signal pin is HIGH and negative value

void IR_rec_Check()
{
 IRstate = digitalRead(IR_rec_pin);// retrieve pin status

 if(IRstate != IRstate_last){// check for status changed

 long int timeNow = micros();// retrieve current time
 long int dT = timeNow - time_last;// time from last event

 if(dT >= durationMax && !isIdle){
 isIdle = true;
 Serial.println("Idling...\n");
 }
 else if(dT < durationMax && dT > 400){
 isIdle = false;
 Serial.print(IRstate == HIGH？ dT : dT); Serial.print(" ");
 }

 time_last = timeNow;
 }
 IRstate_last = IRstate;
}

void setup() {
 Serial.begin(115200);
 pinMode(IR_rec_pin, INPUT);// Configure pin operating mode
 IRstate = digitalRead(IR_rec_pin);// Read initial Pin status
 IRstate_last = IRstate;
}

void loop() {

 IR_rec_Check();
 delayMicroseconds(20);
}

86Duino
www.86duino.com

-13-

represent the signal is received when the output signal pin is LOW, as shown in

the following figure:

Note: When the infrared receiver detected IR signal from the transmitter, the

receiver’s output pin goes LOW, when IR signal is not detected, the receiver’s

output pin goes HIGH. The negative values shown in the Serial Monitor

represent data received from the transmitter. Since positive value represent

detected signal when the receiver’s output pin is HIGH where data are not

detected, these value can be ignored.

The above code executes the IR_rec_Check() routine every 20 µs, which call

the digitalRead() function to read infrared receiver’s output pin status.

When change in status is detected, the micros() function is called to record

the time when the change took place. Then the elapsed time from the last event

is calculated based on the current time retrieved by the micros() function,

assigned to the timeNow variable, and time_Last variable which contains the

time when the last event took place. If the elapsed time is longer than

durationMax the code set the isIdle variable to true. If the elapsed time is

86Duino
www.86duino.com

-14-

less than durationMax and more than durationMin, the code set the

isIdle variable to false. If the elapsed time is less than durationMin, the

received signal is treated as noise and ignored.

Since infrared data transmission can be a few hundred µs long, it’s best to use

data sampling interval in the multiple of 10 µs range. If the sampling rate is too

slow, the received data may not be accurate.

Note: Even when the IR remote is not transmitting, the receiver may be

affected by interference signal and output signal with random duration. To

minimize interference and insure the received data is accurate, it’s necessary to

implement some form of communication protocol which include special

characters to indicate the beginning, ending and length of each data message,

similar to the serial communication protocol discussed in the earlier chapter.

For the exercises in this application note, we use an IR remote control for an

in-vehicle MP3 player, as shown in the following figure.

Using the above IR remote control as example, when pressing button “0” on the

remote, the following stream of data is transmitted:

「8883 -4487 524 -599 591 -525 594 -516 522 -610 580 -527

596 -513 514 -600 595 -524 593 -1632 596 -1630 516 -1697

606 -1631 602 -1625 519 -1707 609 -1630 585 -1630 525 -595

630 -1594 523 -1704 610 -509 509 -1717 606 -510 517 -609

615 -503 582 -1630 594 -534 591 -506 520 -1707 607 -509 514

-1715 602 -814 1405 -1632 518」

Time duration for the above data is measured in µs. By placing the above data

into an excel document, we can use excel’s graph function to observe the data,

as shown in the following figure.

86Duino
www.86duino.com

-15-

After trimming away the starting and ending characters, there are 64 unit of data.

When a different button is pressed, we can see different sequences of data.

From the above graph, we can see data duration from the remote is 600 µs when

the signal is HIGH, and 600 µs when the signal is LOW. The combined duration

is 1200 µs to from a data bit. Since the chance for transient signals to match the

exact frequency pattern in use by both the transmitter and receiver is very small,

interference problem is minimal. You can use IR remote control for different

device to review different data pattern.

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

86Duino
www.86duino.com

-16-

4. Third exercise: IRremote library (Receiving)

There are many different variety of IR communication protocols, which requires

enormous effort trying to learn and figure out how to work with them. Luckily,

there are open source libraries available to help. For the exercise in this section,

we will use the IRremote for 86Duino library. This library is ported from the

IRremote library created by Ken Shirriff, who generously shared this library to the

open source community.

The IRremote library includes communication protocols that support IR

transmitting and receiving functions for devices from different manufacturers,

including NEC, Sony SIRC, Philips RC5, Philips RC6, Sharp, Panasonic, JVC, Sanyo,

Mitsubishi and etc. The IRremote library includes function to output received

data in raw data format, enabling you to observe all of the received data.

For this section, using the same circuitry from previous exercise, we will work

through an example to receive IR signals and talk about some practical use case

for IR, using the same circuitry from previous exercise.

From the 86Duino IDE, enter the following codes:

86Duino
www.86duino.com

-17-

#include <IRremote.h>
int IR_rec_pin = 2;// I/O pin attach to IR receiver output

// IRremote library – IR receiver assignment
IRrecv IRrecver(IR_rec_pin);

// Variable to hold decoded result
decode_results results;

// Output decoded data for observation
void Print_IRdecodeResult(decode_results &decodeResults)
{
 int dataLength = decodeResults.rawlen;

 switch(decodeResults.decode_type)
 {
 case NEC:
 Serial.print(">> NEC:\t");
 break;

 case SONY:
 Serial.print(">> SONY:\t");
 break;

 case RC5:
 Serial.print(">> RC5:\t");
 break;

86Duino
www.86duino.com

-18-

 case RC6:
 Serial.print(">> RC6:\t");
 break;

 case DISH:
 Serial.print(">> DISH:\t");
 break;

 case SHARP:
 Serial.print(">> SHARP:\t");
 break;

 case SANYO:
 Serial.print(">> SANYO:\t");
 break;

 case MITSUBISHI:
 Serial.print(">> MITSUBISHI:\t");
 break;

 case PANASONIC:
 Serial.print(">> PANASONIC(addr=\t");

 Serial.print(results.panasonicAddress);
 Serial.print("):\t");
 break;

 case JVC:
 Serial.print(">> JVC:\t");
 break;

 case UNKNOWN:
 Serial.print(">> Unknown:\t");
 break;

 default:
 break;
 }

 // Decoded data from protocols (16-Bit)
 Serial.print(decodeResults.value, HEX);
 Serial.print(" (");

 // Total number of received data bit.
 Serial.print(decodeResults.bits, DEC);
 Serial.print(" bits), ");

 Serial.print("RawData (");
 Serial.print(dataLength, DEC);
 Serial.println(")= ");

 // Raw received data output
 for (int i = 0; i < dataLength; i++) {

int data = decodeResults.rawbuf[i] * USECPERTICK;
 if ((i % 2) == 1) {
 Serial.print(data, DEC);// HIGH
 }

86Duino
www.86duino.com

-19-

After compile and uploading the above code to EduCake, launch Serial Monitor

from the 86Duino IDE. Then, point the IR remote control to the receiver circuit

and press a few buttons to transmit IR data.

The Serial Monitor on the following figure is showing received data from the MP3

IR remote control used for the exercise.

 else {
 Serial.print(-data, DEC);// LOW
 }
 Serial.print(" ");
 }
 Serial.println();
}

void setup()
{
 Serial.begin(115200);
 IRrecver.enableIRIn();// Initialize IR Receiver
}

void loop() {
 if (IRrecver.decode(&results))
 {

Print_IRdecodeResult(results);
// Resume IR receiving after completing current data decoding

 IRrecver.resume();
 }
}

86Duino
www.86duino.com

-20-

When pressing 0 on the IR remote to transmit data, the received data from the IR

receiver circuit is decoded by the IRremote library. With existing function that

are part of the IRremote library, you can easily create 86Duino sketch capable of

decoding IR data transmission using different protocols from different

manufacture.

The MP3 IR remote control used, as part of the process to create the sample

exercise, is using NEC’s IR communication protocol. Data length and duration

for the data stream in this exercise is similar to exercise 2 in the earlier section.

Following is the graphical presentation for the data stream using Excel.

Following are some of the IR transmission behavior for MP3 IR remote control

we use, which is based on NEC’s transmission protocol:

 Leading signal: When a key is pressed on the remote control, a 9ms

leading pulse burst with 4.5ms space.

 Data logic ‘0’: A 560 µs pulse burst follow by a 560 µs space

 Data log ‘1’: A 560 µs pulse burst follow by a 1690 µs space

 Repeat (If the key on the remote control is kept pressed, a repeat code

will be issued): A 9 ms leading pulse burst with 2.25 ms space, follow by

a 560 µs pulse burst to mark the end of the space.

When pressing the ‘0’ button on the MP3 IR remote, it’s corresponding to the

0x00FF6897 coding with 64 HIGH/LOW that make up 32 logical bit, total of 4

bytes, where the 1st 16-Bit is the address and the last 16-Bit is the encoded data.

When one of the button is kept pressed, after receiving the initial set of data, the

repeat command (‘FFFFFFFF’) is sent every 110 ms. Let’s say you press the

volume up button on the remote, it transmit a data stream that represent the

volume up button follow by the repeat code, ‘FFFFFFFF’, until the button is

86Duino
www.86duino.com

-21-

released. Since the leading data stream prior to the repeat code is different,

multiple IR remote kept pressed in the same room would not interfere the others’

function, which is one of the key advantage of adopting and use communication

protocol.

To use the IRremote library, you need to add ”IRremote.h”, follow by ”IRrecv

IRrecver(IR_rec_pin)”, the syntax to declare an IR receiver object, where the I/O

pin attached to the IR receiver is the function parameter. The ”decode_results

results” is a class with the following:

 decode_type: Designate encoding method

 panasonicAddress: Address field for Panasonic specific protocol

 Value: Data value

 bits: Total number of data bit.

 unsigned int*rawbuf: Raw data buffer

 rawlen: Raw data length

When pressing the ‘0’ button on the MP3 IR remote, it’s corresponding to the

0x00FF6897 coding with 64 HIGH/LOW that make up 32 logical bit, total of 4

bytes, where the 1st 16-Bit is the address and the last 16-Bit is the encoded data.

During the setup() phase, the IRrecver.enableIRIn() function is called to the

initialize IR receiver. Then, in the main loop() function, the

IRrecver.decode(&results) function is called to scan data from the IR receiver,

identify encoding type and assign decoded data to the results variable upon

successful decoding and return true. When failing to decode data, the function

return false. When the function return true, the Print_IRdecodeResult()

function is called to print out the decoded data.

Comparing with the 2nd exercise earlier, this exercise enables you to view and

observe the protocol and transmitted data from different IR remote control you

have.

86Duino
www.86duino.com

-22-

For more information about NEC’s IR communication protocol, visit the following

URLs:

http://mcudiy.blogspot.tw/2010/11/22-irinfrared-nec-protocol.html

http://www.sbprojects.com/knowledge/ir/nec.php

86Duino
www.86duino.com

-23-

5. Third exercise (Part-2): IRremote library (Receiving)

Continue with the exercise from the previous section, Additional components are

added to extend functionality to provide servo control, as shown in the following

figure:

After completing the above circuitry, enter the following code to the 86Duino

Coding IDE:

#include <IRremote.h>
#include <Servo.h>

int IR_rec_pin = 2;// IR receiver data output pin
int servo_pin = 3;// Servo output pin

IRrecv IRrecver(IR_rec_pin);// IR receiver object
decode_results results;// object to store decoded data

Servo servo_0;// Servo object
typedef enum
{
 DIR_NONE = 0,
 DIR_LEFT,
 DIR_RIGHT
} ServoDir;// Define rotation direction

int servoDir = DIR_NONE;// Servo rotation direction
unsigned int ServoPosition = 1500;// Serco rotation position

// Output decoded data
void Print_IRdecodeResult(decode_results &decodeResults)
{

86Duino
www.86duino.com

-24-

 if(decodeResults.decode_type == NEC)
 {
 switch(decodeResults.value)
 {
 case 0x00FFA25D:// CH- buttom
 servoDir = DIR_LEFT;
 ServoPosition += 50;
 break;

 case 0x00FF629D:// CH buttom
 servoDir = DIR_NONE;
 ServoPosition = 1500;
 servo_0.writeMicroseconds(ServoPosition);
 break;

 case 0x00FFE21D:// CH+ buttom
 servoDir = DIR_RIGHT;
 ServoPosition -= 50;
 break;

 case 0xFFFFFFFF:// Repeat
 if(servoDir == DIR_RIGHT)
 { ServoPosition -= 50; }
 else if(servoDir == DIR_LEFT)
 { ServoPosition += 50; }

// Limit servo position within a safe range
ServoPosition = constrain(ServoPosition, 1100, 1900);

 // Control rotation angle
 servo_0.writeMicroseconds(ServoPosition);

 Serial.print("ServoPosition = ");
 Serial.println(ServoPosition);
 break;

 default:
 break;
 }
 }
}
void setup()
{
 Serial.begin(115200);
 IRrecver.enableIRIn();// Initial IR receiver object
 servo_0.attach(servo_pin);// Set I/O pin attached to Servo
}

void loop() {
 if (IRrecver.decode(&results))
 {

Print_IRdecodeResult(results);

// After retrieve and decode data from IR receiver,
// this function is call to resume IR receiver function.

 IRrecver.resume();
 }
}

86Duino
www.86duino.com

-25-

After compile and uploading the above code to EduCake, you can control the RC

servo’s movement, moving the servo’s arm, using an IR remote control. The

above code is similar to the 1st exercise, with some modification in the

Print_IRdecodeResult() function. In the switch-case block of code, the case

selection value “0x00FFA25D“, “0x00FF629D” and “0x00FFE21D” are used to

correspond to the CH-, CH and CH+ button on the IR remote control we use to

create this exercise, which is based on NEC protocol.

If you are using an IR remote control using a communication protocol different

from NEC, you need to change these variables accordingly for the code to

function as intended.

86Duino
www.86duino.com

-26-

6. Third exercise (Part-3): IRremote library (Transmit)

In the previous exercises, we talked about IR receiving function. In this exercise,

we will talk about IR transmit function, using the following circuitry.

From the 86Duino Coding IDE, enter the following Code:

#include <IRremote.h>

int ID_send_pin = 10;// Define I/O pin attached to IR transmitter

IRsend IR_send;// IR transmitter object for IRremote library

void setup()
{
 Serial.begin(115200);

 IR_send.outPin(ID_send_pin);
 // Note: pin 10 on EduCake with PWM output capability is
 // used to send signal to the IR transmitter
}

86Duino
www.86duino.com

-27-

After compiling and uploading the above code to EduCake, launch Serial Monitor

from the 86Duino IDE and enter some character to the Serial Monitor. The

above code encode ASCII characters received from the serial port and transmit

via the IR transmitter and show the activities on the Serial Monitor, as shown in

the following figure.

void loop() {

if (Serial.available()) {

char data = Serial.read();
//unsigned long cmd = 0x00FF1234;
// Addr = 00FF, Data = 1234

 unsigned long cmd = 0x0;// Addr = 00FF, Data = ？
unsigned long DeviceAddr = 0x00FF;

 // Use data received from Serial port as IR command
 cmd = (DeviceAddr<<16) | (unsigned long)data;
 IR_send.sendNEC(cmd, 32);// sned NEC code format (command, data
bits)

 Serial.print("Serial receive: ");
 Serial.print(data);// char
 Serial.print("(");
 Serial.print(data, HEX);
 Serial.println(")");

 Serial.print("Send IR command in NEC format = ");
 Serial.println(cmd, HEX);
 }
 delay(100);
}

86Duino
www.86duino.com

-28-

The above exercise begin with the “#include<IRremote.h>” statement to bring in

the IRremote library, follow by the “IRsend IR_send;” statement to define an IR

transmitter object. Then, in the “setup()” function, the

“IR_send.outPin(ID_send_pin)” function is called to set the I/O pin attached to

the IR transmitter (Note: You must use one of the I/O with the “~” mark, which

represent the I/O pin is capable to output PWM signal, needed to support IR

transmission.). For the exercise here, we use pin 10 on the EduCake. (The

“#define TIMER_PWM_PIN 10” statement is part of the “IRremote.h” file, which

is included as part of the 86Duino Coding IDE, under the

“\hardware\86Duino\x86\libraries\IRremote\” folder.)

In the “loop()” function, the “Serial.available()” function is call to detect data sent

from the Serial Monitor. When data from the Serial Monitor is detected, the

“char data = Serial.read();” statement is called to read and store the

received-data to the data variable. The MP3 IR remote control we are using for

this exercise transmit 32 bit data. The “cmd = (DevicdAddr<<16)|(unsigned

long)data;” statement place the address location for the data on the left 16-bit of

the data packet, and the actual data value on the right 16-bit of the data packet.

You can modify the code in this section to transmit different IR data value to

trigger different control to better understand how the code function.

After composing the desired command, use the library’s IR_send object to send

the data using NEC protocol, “IR_send.sendNEC(unsign long command, int bits)”.

Since we are working with 32 bit data in this exercise, the “IR_send.sendNEC()”

function is called with 32 as data length. If you changed the code to work with

different data length, be sure to change the data length value to match.

To support IR transmitter/receiver from different manufacturers, in addition to

the sendNEC function, the IRremote library also includes function to support

others, which include sendSony, sendRC5, sendRC6, sendDISH, sendSharp,

sendPanasonic, sendJVC and etc.

If you like to establish your own IR communication protocol and module the data

at a different carrier frequency, you can use the following function provided as

part of the IRremote library:

86Duino
www.86duino.com

-29-

- sendRaw(unsigned int buf[], int len, int Khz)

Following is an example for the above “sendRaw()” function:

In the above code, the “cmdBuf[]” array is used to store a series of HIGH/LOW

data sequences, starting with signal HIGH. The “sendRaw(unsigned int buf[], int

len, int Khz)” function is called with parameters that include data array, with data

value in µs, data length and modulation frequency in KHz. Using this function,

you can transmit data to match just about any IR transmission protocol.

unsigned int cmdBuf[] = {
 8900, 4450,// H L
 550, 600, 550, 500,// H L H L
 600, 550, 550, 550,
 550, 550, 600, 500,
 550, 600, 550, 550,
 600, 1650, 550, 1650,
 600, 1650, 550, 1650,
 550, 1700, 550, 1650,
 600, 1650, 550, 1700,
 500, 600, 550, 1650,
 600, 1650, 600, 500,
 500, 1700, 600, 550,
 500, 600, 600, 550,
 550, 1650, 600, 500,
 600, 550, 550, 1650,
 600, 500, 600, 1650,
 600, 1650, 550, 1650,
 600
 };// 67
 int cmdLength = 67;
 IR_send.sendRaw(cmdBuf, cmdLength, 38);

86Duino
www.86duino.com

-30-

7. Fourth exercise: IR communication between 2 EduCake

In the previous section, we covered the basic usage for the IRremote library. In

this exercise, we will increase the complexity a little bit, using 2 86Duino EduCake

devices and establish IR communication between the 2 devices.

One of the EduCake function as receiver, using the same circuitry as the one in

Exercise 3 part-2. The other EduCake function as transmitter, using the

following circuit:

From the 86Duino Coding IDE, enter the following codes for the transmitting

device:

86Duino
www.86duino.com

-31-

 For the EduCake device function as the receiver, use the following code:

#include <IRremote.h>

int ID_send_pin = 10;// Pin attached to IR tranmitter
int VR_pin = A0;

IRsend IR_send;// IRsend object for the IRremote library

void setup()
{
 Serial.begin(115200);

 IR_send.outPin(ID_send_pin);
 // Note: pin 10 on EduCake with PWM output capability is
 // used to send signal to the IR transmitter

}
void loop() {

 // Read resistor value from the variable resistor
 // (range = 0 ~ 1023)
 unsigned int VRvalue = analogRead(VR_pin);

 // Both transmitting and receiving devices
 // must use the same address
 unsigned long DeviceAddr = 0x00AA;

 // prepare data to be send
 unsigned long cmd = (DeviceAddr<<16) | (unsigned long)VRvalue;

 // Transmit data using NEC protocol
 IR_send.sendNEC(cmd, 32);

 Serial.print("VR value: ");
 Serial.println(VRvalue, DEC);
 Serial.print("Send IR command in NEC format = ");
 Serial.println(cmd, HEX);

 delay(200);
}

#include <IRremote.h>
#include <Servo.h>

int IR_rec_pin = 2;// I/O pin attached to IR receiver
int servo_pin = 3;// I/O pin attached to Servo

IRrecv IRrecver(IR_rec_pin);// IR receiver object

decode_results results;// variable to store decoded result

Servo servo_0;// Servo object

86Duino
www.86duino.com

-32-

After the codes are compiled and uploaded to both transmitting and receiving

EduCake devices, you can control movement of the servo attached to the

EduCake device that function as the IR receiver by changing the variable resistor

on the EduCake that function as the IR transmitter.

// Output successfully decoded data for observation
void Print_IRdecodeResult(decode_results &decodeResults)
{
 // Device address from received data stream
 unsigned int DeviceAddr = (unsigned int)((decodeResults.value
& 0xFFFF0000)>>16);

 // data value from received data stream
 unsigned int VRvalue = (unsigned int)(decodeResults.value &
0x0000FFFF);

 if(decodeResults.decode_type == NEC && DeviceAddr == 0x00AA)
 {
 // Value range 0~1023 mapped to 1000~2000

int ServoPosition = map(VRvalue, 0, 1023, 1000, 2000);

// Limit servo movement within safe range

 ServoPosition = constrain(ServoPosition, 1100, 1900);

 // set servo position
 servo_0.writeMicroseconds(ServoPosition);

 Serial.print("IR receive OK, raw data = ");
 Serial.print(VRvalue, DEC);
 Serial.print("ServoPosition = ");
 Serial.println(ServoPosition, DEC);
 }
}

void setup()
{
 Serial.begin(115200);
 IRrecver.enableIRIn();// Initialize receiver object
 servo_0.attach(servo_pin);// configure I/O attached to servo
}

void loop() {
 if (IRrecver.decode(&results))
 {

Print_IRdecodeResult(results);

// Resume receiving data after decoding current received data

 IRrecver.resume();
 }
}

86Duino
www.86duino.com

-33-

On the IR transmitting EduCake, there are codes that acquire data from the

analog to digital converter periodically, combines the acquired data with device

address 0x00AA and transmit the combined data.

The code for the IR receiver is similar to exercise 3 part-2 earlier, with the

following functions to decode device address and data value from the received IR

data stream:

Then, after the data is successfully decoded, based on NEC IR communication

protocol, VRvalue (value from the transmitting device’s variable resistor) is used

to set the servo’s position, within a min and max limiting value to keep servo

movement within a safe range.

Once you understand IR communication introduced in this application note,

using an 86Duino EduCake, you can simulate large variety of IR remote control.

Even for the remote control without documentation, it’s possible for you to

record IR data stream from the remote, analyze the recorded data and figure out

the protocol and commands.

unsigned int DeviceAddr = (unsigned int)((decodeResults.value &
0xFFFF0000)>>16)
unsigned int VRvalue = (unsigned int)(decodeResults.value &
0x0000FFFF)

