

Windows Embedded Compact 2013

Getting Started using 86Duino EduCake

Date: April 19th, 2015

By: Samuel Phung

Twitter: @Samuelp101

Blog: http://Embedded101.com/Samuelp101

Table of Contents
Part-1: Development Environment & Tools .. 3

Typical development tasks .. 3

Requirement Software .. 3

Software Installation ... 4

Development Environment ... 7

Target Device .. 9

Compact 2013 Terminology .. 10

Part-2: OS Design Development ... 11

New OS Design Project ... 11

Customize OSDesign: BSP Components ... 14

Customize OSDesign: OS Components .. 16

Build, Compile and Generate OS runtime image .. 17

Summary ... 17

Part-3: Download and Debug OS Runtime Image ... 18

Target Device (EduCake) Preparation using DiskPrep .. 18

Target Device for Compact 2013 .. 19

Download OS Runtime Image to EduCake .. 21

Kernel Independent Transport Layer (KITL) .. 22

Debug with Target Control.. 23

Summary ... 24

Part-4: Application Development with VS2013 and C# .. 25

Compact 2013 Application Development ... 25

Compact 2013 OS Image for Application Development ... 25

Create an SDK from MyOSDesign ... 27

Build and Generate OS Runtime Image .. 28

Build and Generate SDK .. 28

Download OS Runtime Image to Target Device .. 29

Develop Compact 2013 Application in C# ... 30

Application Debug ... 32

Summary ... 32

Part-1: Development Environment & Tools | 3

Part-1: Development Environment & Tools

In part-1 of this Compact 2013 getting started series, let’s go over the development
environment, required software and connectivity between the development workstation
and the target device and cover the following:

 Typical development tasks

 Required software

 Software Installation

 Dedevelopment environment

 Target device

 Compact 2013 terminology

Typical development tasks

Regardless of the development environment we ended up with, it’s necessary for us to
know about the various development tasks involve in process to create the device.

After hardware platform is decided, developing a Compact 2013 device typically involves
the following:

1. Board support package (BSP) for the device, which include hardware adaptation
code, device drivers and bootloader.

2. Operating system image for the device (OS design).

3. SDK to support application development.

4. Testing and debugging

5. Deploy OS image along with application onto target device for distribution

Note:

This series of application note is intended for beginner and intermediate developer with limited
knowledge about the Compact 2013 development environment, and will not cover BSP, device
driver, bootloader and other advanced subject.

Requirement Software

The following software components are needed to support Compact 2013 development:

 Visual Studio 2013 (VS 2013) or Visual Studio 2012 (VS 2012) with Update 4

Note:

The express version of VS 2012 and 2013 does not support Compact 2013 development.

While the Visual Studio express version does not support Compact 2013
development, Microsoft released another version, Visual Studio 2013 Community
edition, available for free that support Compact 2013 development. Visit the
following URL for information and download link:

4 | Part-1: Development Environment & Tools

http://www.visualstudio.com/en-us/news/vs2013-community-vs.aspx

 Application Builder for Windows Embedded Compact 2013

Application Builder is needed, along with an SDK for the target device to support
application development for Compact 2013. Visit the following URL to download the
software:

http://www.microsoft.com/en-us/download/details.aspx?id=38819

 Windows Embedded Compact 2013 Platform Builder

Platform Builder is the main development tool for Compact 2013, to develop OS
design, device driver, BSP, native application, testing and debugging.

From the following URL, look for Windows Embedded Compact 2013. You will need
a valid Microsoft ID to register and get an activation key. While the site indicate it’s
a trial version, it is a full featured and fully functional version.

http://www.microsoft.com/windowsembedded/en-us/downloads.aspx

 SDK for target device

To develop application for a Compact 2013 device, you need a Compact 2013 SDK
for the target device. You can generate the SDK from within the OS design project
used to develop the OS runtime image for the target device. The target device’s
vendor may have an existing SDK for Compact 2013 to support their product.

Software Installation

Improper software installation is one of the major source of problem for developer new to
Compact 2013. It’s a complex development environment that involve huge amount of files.
It’s well worth the effort to take time and carefully install all of the required component.

VS 2013 Ultimate is used to perform the sample exercises in this getting started series.

Note:

While we work through the sample exercises using VS 2013, the same BSP, 3rd party components
and sample codes work in the VS 2012 development environment.

Here is the recommended installation sequence:

1. Visual Studio 2013.

2. Application Builder for Windows Embedded Compact 2013.

There are two different version of Application Builder, one for VS 2013 and the other
for VS 2012. Be sure to install the correct version.

3. Windows Embedded Compact 2013 Platform Builder.

http://www.visualstudio.com/en-us/news/vs2013-community-vs.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=38819
http://www.microsoft.com/windowsembedded/en-us/downloads.aspx

Part-1: Development Environment & Tools | 5

In the event you have the Windows Embedded Compact 2013 installation software
or DISC from the initial release (mid 2013), it was created to support VS 2012 and
may have problem to install on a VS 2013 development machine.

If you have MSDN subscription, use “Windows Embedded Compact 2013 Update 5”,
this update package is released as a full product installation that includes all of the
QFEs up until Update 5.

If you are getting the installation package from the Windows Embedded product
trial website, it’s an updated installation package that support VS 2013.

During the Compact 2013 Platform Builder installation process, you can chose to
skip update. Otherwise, it will take a lot more time to check and download
additional updates, as shown in the following installation screen (you can perform
the update at a later time):

Fig-1.1: Compact 2013 installation

The “Full install” will occupy around 25 GB of storage. You can select the “Custom
install” option and select the components needed to support the target device you
plan to use, to minimize the required disk storage.

6 | Part-1: Development Environment & Tools

Fig-1.2: Compact 2013 installation

Since we are using an x86 device for the exercise in this series, we excluded ARM
CPU support from the installation, as show in the following screen:

Fig-1.3: Compact 2013 installation

When the “offline layout” option is selected, a copy of the installation files are saved
on the development machine’s local hard drive, which can be helpful later.

Part-1: Development Environment & Tools | 7

Fig-1.4: Compact 2013 installation

4. Next, install 3rd party BSP, device drivers and SDK needed to support the target
device.

Third party BSPs are installed to the following directory, assuming you install
Compact 2013 to the default directory:

C:\WINCE800\Platform

Third party components are installed to the following directory:

C:\WINCE800\3rdParty

Development Environment

In addition to properly install all of the required software, a proper development
environment is another important aspect you need to be aware of.

Depending on the target device you are using, the setup may be different.

For the exercises in this getting started series, we are using an x86 target device. Both the
development workstation and the target device are attached to the same Local Area
Network (LAN) with DHCP service to provide IP address dynamically. In addition, a null RS-
232 serial cable is used to connect a serial port on the target device to the development
workstation, to capture serial debug messages.

8 | Part-1: Development Environment & Tools

Fig-1.5: Development environment

The following figure shows the development flow for Windows Embedded Compact 2013:

Fig-1.6: Development environment

In the above figure, workstation #1 is used to develop an OS design project, to generate and
OS runtime image (NK.bin) for the target device. SDK is generated from the OS design
project in workstation #1, which is needed by workstation #2 to develop application for the
target device.

Note:

The same development workstation can be used to develop both the OS runtime image and
application for a Compact 2013 device. In real life situation, it’s common to separate and assign
OS image development and application development to different developers.

Part-1: Development Environment & Tools | 9

Target Device

The exercise in this series is based on a target device with board support package (BSP) and
bootloader available, 86Duino EduCake.

The 86Duino EduCake (EduCake) is designed with a 300 MHz Vortex86EX System-on-Chip
(SoC), originally designed to emulate the Arduino platform. The I/O interfaces accessible on
the EduCake’s solderless breadboard is electronically compatible to the Arduino Leonardo
and Arduino Uno, which is also referred to as Arduino 1.0 pinout, as shown in the following
figure.

Fig-1.7: Target device - 86Duino EduCake

The EduCake, packaged in a metallic enclosure with an integrated solderless breadboard, is
designed to provide an easy to use platform for academic and hobbyist developers to work
with different experimental circuit, to explore and learn.

While it was originally designed to target the Arduino user community, the EduCake is
capable to boot to DOS, Linux, Windows CE, Windows Embedded Compact, Windows XP,
Windows XP Embedded, Windows Embedded Standard 2009 and other RTOS that support
the typical PC built on 32-bit x86 processor.

For the exercise in this series, we will use the BSP, SDK and other resources from the
86Duino project on Codeplex, which is available via the following URL:

 http://86duino.codeplex.com

For more information about the EduCake, refer to the following URL:

 http://www.86duino.com/index.php?p=95

http://86duino.codeplex.com/
http://www.86duino.com/index.php?p=95

10 | Part-1: Development Environment & Tools

Compact 2013 Terminology

It’s common practice for many industry to have its own set of common terminology.
Knowing the terminology and what it represent is helpful, especially when you are new to
the environment trying to learn the new environment. The following table is a list of some
of the common terminology in the Compact 2013 environment.

Terminology Description

BSP
Board support package is a set of software components
that include device drivers and OEM adaptation layer
codes for the supported target device.

Catalog
Catalog contains components for Compact 2013 OS such
as OS features, modules, device drivers, BSP and
application components.

OAL
OEM Adaptation Layer is a low-level code acting as the
interface between the OS and the hardware.

OS design
A Visual Studio project to develop and generate a
custom Compact 2013 OS runtime image for a target
device.

OS runtime image
The binary image file generated from an OS design
project.

Target device
The hardware platform used to develop Compact 2013
OS or application.

KITL
Kernel Independent Transport Layer is a communication
protocol used for debugging in the Compact 2013
development environment.

CoreCon
Short for Core connectivity, used to establish
connectivity between the development station and
target device.

Release directory
Refers to the directory where the OS design project
output files and software components during the build
and compilation process.

Build release directory same as Release directory

Part-2: OS Design Development | 11

Part-2: OS Design Development

In part-2 of this Compact 2013 getting started series, we will work through the steps to
develop an OS design, generate an OS runtime image, download and launch the image onto
a target device (86Duino EduCake) for testing and debugging.

For information about the development environment, please refer to part-1 of this series
(development environment and tools), via the following URL:

http://www.embedded101.com/Blogs/SamuelPhung/entryid/577/compact-2013-development-environment-
tools

The board support package (BSP) for the 86Duino EduCake (86Duino_80B), used to create
the OS design, is available on Codeplex:

http://86duino.codeplex.com/

New OS Design Project

Let’s work through the following steps to create a new OS design project:

VS IDE resolution: 1000 x 720

5. From Visual Studio 2013 (VS2013) IDE, select FileNewProject to bring up the
New Project wizard.

6. From the left pane, select Platform Builder. Click to hightligh OS Design on the
center pane and enter project name, MyOSDesign, as shown in Fig-2.1.

Fig-2.1: New OS Design project.

7. Click OK to launch OS Design Wizard.

8. Click Next to continue and launch the Board Support Packages selection screen.
Select 86Duino_80B, as shown in Fig-2.2.

http://www.embedded101.com/Blogs/SamuelPhung/entryid/577/compact-2013-development-environment-tools
http://www.embedded101.com/Blogs/SamuelPhung/entryid/577/compact-2013-development-environment-tools
http://86duino.codeplex.com/

12 | Part-2: OS Design Development

Fig-2.2: BSP selection

9. Click Next to continue and bring up the Design Templates selection screen. Select
Headless Device, as shown in Fig-2.3.

Fig-2.3: Design Templates selection

10. Click Next to continue and bring up the Headless Device OS components selection
screen, as shown in Fig-2.4.

Part-2: OS Design Development | 13

Fig-2.4: OS Components selection

11. Select components as shown in Fig-04 and click Finish to complete the OS Design
wizard step.

At this point, VS2013 created the initial workspace for the new OS design project based on
the BSP, design template and components selected. The following directories are created
for the project:

 C:\WINCE800\OSDesigns\MyOSDesign

This is the folder for the MyOSDesign solution. VS2013 supports different project
types. A solution provides a centralized workspace to keep different project types
supporting the same solution in one location.

For example, the MyOSDesign solution may include the MyOSDesign OS design
project, Visual C# managed code application project and “Visual C++ native code
application project, all within the same VS2013 solution workspace.

The VS2013 IDE should look similar to the screen as shown in Fig-2.5.

14 | Part-2: OS Design Development

Fig-2.5: VS2013 IDE with MyOSDesign project active

Customize OSDesign: BSP Components

Next, to customize the OSDesign, we will work through the steps to select and add BSP
components to MyOSDesign from the Catalog Items View window, as shown in Fig-2.5.

 Expand component folders and select components from the 86Duino_80B BSP, as
shown in Fig-2.6.

Fig-2.6: BSP components

Part-2: OS Design Development | 15

 Select and include the following BSP components to the OS design:

o R6040 Ethernet driver
o 1st Serial Port
o ATAPI PCI/IDE Storage Block Driver

Driver to support IDE, SATA, Compact Flash, SD and Micro-SD storage.

o Hive-based registry support

The Hive-based registry component needed to save registry settings to non-
volatile storage between power reset (cold boot).

o Aggressive flushing

Enable a background thread to actively flush and save changes to the registry.

o USB Mass Storage Class driver

This component set the SYSGEN_USB_STORAGE environment variable to include
the USB storage class driver to support external USB storage devices, including
USB flash and portable USB hard drive.

o AutoLaunch

Helper utility configurable to launch one or more application during startup.

o CoreCon

When this component is selected, CoreCon files and registry settings are added
to the OS design, to support connectivity between VS2013 IDE and the target
device to deploy VS2013 application to the device for testing and debugging.

o IP Address Broadcast

Since a headless device does not have any user interface to interrogate the
device’s IP address, needed by the VS2013 IDE to connect to the device, this
component is configured to run during startup to broadcast the device’s IP
address, via UDP.

Note:

The IPAddressDiscovery.exe, a Windows application to detect UDP broadcast messages from “IP
Address Broadcast” and display the target device’s IP address, is provided as part of the BSP, in
the BSP’s \Misc. directory. Launch this utility from the development machine before and have this
application waiting for broadcast message before launching the OS design on the target device.

16 | Part-2: OS Design Development

Customize OSDesign: OS Components

In addition to the BSP components needed to support the target device’s hardware,
additional OS components are needed to support the device’s application and function, as
shown in Fig-2.7.

Fig-2.7: OS components

OS components are under the \Core OS\Windows Embedded Compact folder in the
Catalog Items View window. During the steps to create the initial OS design workspace, the
OS design wizard included a number of OS components, based on the selected design
template, to the OS design.

Select and add the following OS components to the OS design:

 Display Driver Stub

Compact 2013 OS, similar to the Windows OS for the desktop, is design to support
rich user interface environment and is heavily dependent on GWES (Graphics,
Windowing and Events Subsystem), even for headless configuration. The Display
Driver Stub component is null display driver.

Part-2: OS Design Development | 17

Build, Compile and Generate OS runtime image

With the required BSP and OS components added to the OS design project, it’s time to build
and generate the OS runtime image. From the VS2013 IDE, select BuildBuild Solution to
build the project.

Depending on the PC’s performance, it may take anywhere from 10 to 20+ minutes to
complete the build process. When the build process is completed, the VS2013 IDE’s Output
tab display the build result, as shown in Fig-2.8.

Fig-2.8: Build completed

When the build is successful, the build ends with zero error and generate an OS runtime
image file, NK.bin, in the following build release directory:

C:\WINCE800\OSDesign\MyOSDesign\MyOSDesign\RelDir\86Duino_80B_x86_Release

When the build ends with 1 or more error, it does not generate an OS runtime image.
Review the build.log and build.err files in the C:\WINCE800\ folder to analyze problem.

Summary

In part-2 of this series, we talk about developing an OS design, build, compile and generate
an OS runtime image. In part-3, we will talk about establish connectivity and download OS
runtime image to the target device.

18 | Part-3: Download and Debug OS Runtime Image

Part-3: Download and Debug OS Runtime Image

In part-3 of this Compact 2013 getting started series, we will work through the steps to
establish connectivity and download OS runtime image to the target device, an 86Duino
EduCake (EduCake).

Target Device (EduCake) Preparation using DiskPrep

To establish connectivity between VS2013 IDE and EduCake and download OS runtime
image, the EduCake needs to be configured with BIOSLoader to launch Eboot.bin (an
Ethernet bootloader).

The EduCake can be configured to boot from USB and SD flash storage. Both USB and SD
flash storage can be format and configured with BIOSLoader and Eboot.bin, using Diskprep.

Here are the steps to format and configure an SD flash storage (These same steps apply to
USB flash storage):

 Insert the SD flash storage to the SD slot on the PC or use an SD-to-USB adapter.

 After the PC detected the SD flash storage, launch DiskPrep with elevated privilege.

 From DiskPrep program screen, select SD flash from Disk Selection, as shown in Fig-
3.1.

Fig-3.1: Diskprep

 Select file system.

 Click on Browse, next to the “Load specific image file copied from” option, and
navigate to locate and select Eboot.bin.

http://1drv.ms/1yXZ3c0

Part-3: Download and Debug OS Runtime Image | 19

(Eboot.bin is included in the 86Duino_80B BSP, in the \Misc folder)

 Click on OK to format and configure the SD flash storage.

Target Device for Compact 2013

To establish connectivity and download OS runtime image from VS2013 IDE to the target
device, both the development PC and target device must be attached to the same Local
Area Network, with IP addresses on the same subnet.

For the example here, the EduCake and development PC are both attached to the same
Local Area Network with DHCP service to provide IP address dynamically, as shown in Fig-
3.2.

Fig-3.2: Development PC and EduCake attached to the same LAN

As part of the development process, we need to establish connectivity and download OS
runtime image to the target device repeatedly for debugging and testing.

While we can select TARGET | Attach Device option from the VS2013 IDE to download OS
image to the target device, without preconfigured device profile, this process goes through
the steps to detect, identify and associate the device with the project for every download.
By creating a target device profile, we can avoid the steps to detect and identify the device
when downloading OS runtime image to the device.

Let’s go through the following steps, using MyOSDesign project from part-2 of this series, to
create a target device profile for the EduCake:

 With MyOSDesign project open, from the VS2013 IDE, select TARGET | Connectivity
Options to bring up the Target Device Connectivity Options screen, as shown in Fig-
3.3.

20 | Part-3: Download and Debug OS Runtime Image

Fig-3.3: Target Device Connectivity

 Click on Add Device

 Enter EduCake as the name for the device and click Add.

 On the Target Device Connectivity Options screen, click on the top most Settings
button, for Kernel Download, to bring up the Ethernet Download Settings screen, as
shown in Fig-3.4.

Fig-3.4: Ethernet Download Settings

 With the Ethernet Download Settings screen waiting for BOOTME messages from
the target device, power on the EduCake.

 As BIOSLoader launches Eboot.bin on EduCake, it broadcasts a series of BOOTME
messages, via UDP over the attached LAN.

 As the Ethernet Download Settings screen deteced the BOOTME message from
EduCake, it display device ID from the EduCake, as shown in Fig-3.5.

Part-3: Download and Debug OS Runtime Image | 21

Fig-3.5: Target device detected

 From the Ethernet Download Settings screen, click on the device ID in the Active
target device window to select the device and click Apply.

 From the Target Device Connectivity Options screen, click Close.

 From the VS2013 IDE, click on Device selection list box and select EduCake as the
target device, as shown in Fig-3.6.

Fig-3.6: Select EduCake as target device.

Download OS Runtime Image to EduCake

With the EduCake and development machine both attached to the same LAN with DHCP
service to provide IP address dynamically, insert the SD flash storage configured with
BIOSLoader and Eboot.bin into EduCake, and go through the following steps to download
OS runtime image generated from MyOSDesign project to EduCake:

 From VS2013 IDE, select TARGET | Attach Device to start the download process and
bring up the Device Status screen, as shown in Fig-3.7.

22 | Part-3: Download and Debug OS Runtime Image

Fig-3.7: Target device status

 Power on the EduCake.

 As Eboot.bin is launched by BIOSLoader on the EduCake, it broadcasts a series of
BOOTME messages.

 As BOOTME message is detected the download process starts and download activity
is shown on the Device Status screen, as shown in Fig-3.8.

Fig-3.8: Target device status – Downloading OS runtime image

Kernel Independent Transport Layer (KITL)

The OS runtime image from MyOSDesign project is generated with KITL enabled. KITL is
needed to establish connectivity and remotely debug the OS image running on the target
device. Remote tools provided as part of the Compact 2013 Platform Builder also require
KITL to function. With KITL enabled, as the OS runtime image launches on the EduCake, the
Output window on the VS2013 IDE display activities from EduCake, as shown in Fig-3.9.

Fig-3.9: Target device startup activities.

Part-3: Download and Debug OS Runtime Image | 23

Debug with Target Control

For headless device, without display or user interface, Compact 2013 provides the following
useful debugging tools to simplify the tasks needed to debug OS runtime image on the
target device remotely:

 Target Control

 Remote Tools

In this section, let’s use Target Control to debug OS image on the EduCake. With
MyOSDesign project open and OS runtime image downloaded to EduCake, go through the
following steps to launch Target Control and debug OS image running on EduCake:

 From VS2013 IDE, select TARGET | Target Control to launch the Windows CE
Command Prompt, as shown in Fig-3.10.

Fig-3.10: Windows CE Command Prompt

Think of the Windows CE Command Prompt (Target Control) window as the remote
command prompt for the connected target device, where you can launch command to
interrogate the device and application included as part of the OS runtime image.

Let’s go through the following steps to run different Target Control command:

 From the Windows CE Command Prompt window, enter the following command to
retrieve the target device’s IP address:

 s ipconfig /d

In the above command, the “/d” parameter redirect the output to the VS2013 IDE’s
Output tab, as shown in Fig-3.11:

24 | Part-3: Download and Debug OS Runtime Image

Fig-3.11: Target control – Retrieve IP address from target device

 Next, enter the following command to display active processes on the target device:

 gi proc

As the above command execute, it lists the processes that are running on the target
device, as shown in Fig-3.12.

Fig-3.12: Target Control – List of running processes from target device

For more information about target control, visit the following URL:

 https://msdn.microsoft.com/en-us/library/ee479807.aspx

Summary

In part-3 of this series, we talked about OS runtime image download to the target device
and Target Control for debugging. In part-4, we will talk about debugging with remote
tools.

https://msdn.microsoft.com/en-us/library/ee479807.aspx

Part-4: Application Development with VS2013 and C# | 25

Part-4: Application Development with VS2013 and C#

In part-4 of this getting started series, we will talk about the application development
environment for Compact 2013 and work through the steps to develop a console C#
application from Visual Studio 2013 IDE and deploy the application to the target device,
EduCake, for testing and debug.

Compact 2013 Application Development

There are multiple options to develop Compact 2013 application. From the VS2013 IDE, you
can develop application for Compact 2013 device using C, C++, C# or Visual Basic.

To develop application for a Compact 2013 device, you need the following:

 Visual Studio 2013
 Application Builder for Windows Embedded Compact 2013
 SDK for the Compact 2013 device

To test and debug the application, you need the following:

 A Compact 2013 target device preloaded with OS runtime image configure to
support application deployment from Visual Studio 2013.

Compact 2013 OS Image for Application Development

Continue with the MyOSDesign project created in part-2 of this series, let’s work through
the steps to include additional components to the project, needed to support application
development:

 Launch MyOSDesign project.

 From the Catalog Items View window, add additional components to the OS design
project, as shown in Fig-4.1.

Fig-4.1: Catalog Items View window

https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=38819

26 | Part-4: Application Development with VS2013 and C#

 AutoLaunch

When included in an OS image, the AutoLaunch application is configurable to launch
one or more application during startup.

 CoreCon

When included in an OS design project, the CoreCon component add the necessary
files to establish CoreCon connectivity between VS2013 IDE and target device to
download application to the device for debugging and testing.

 IP Address Broadcast

As part of the application development process, to deploy application to the target
device, you need to know the device’s IP address. This component is designed to
help you acquire IP address from the target device.

When selected, this component add an application to the OS design, configured to
launch during startup to broadcast the device’s IP address via UDP.

A Windows desktop application, IPAddressDiscovery, to listen for the UDP broadcast
message from the target device is provided as part of the BSP, in the BSP’s \Misc
folder.

By default, OS design project is created with KITL enabled. KITL is known to cause
connectivity problem for application development. Work through the following steps to
disable KITL:

 From VS2013 IDE, select PROJECT | MyOSDesign Properties to bring up the
MyOSDesign Property Pages screen, as shown in Fig-4.2.

 Fig-4.2: Disable KITL build option

 From MyOSDesign Property Pages screen, click on Build Options on the left pane.

Part-4: Application Development with VS2013 and C# | 27

 On the right, change the Enable Kernel Independent Transport Layer (KITL) build
option to No.

 Click on Apply and then click on OK to close the screen.

Create an SDK from MyOSDesign

To support application development, we need to generate an SDK from the OS design
project. Go through the following steps to create an SDK from the project:

 From the Solution Explorer window on VS2013 IDE, right mouse click on the SDKs
folder and select Add New SDK, as shown in Fig-4.3.

Fig-4.3: Add New SDK

 The SDK wizard brings up a screen to create the new SDK.

 Enter SDK name, product name, version info, company name and website, as shown
in Fig-4.4.

Fig-4.4: Create new SDK – SDK info

28 | Part-4: Application Development with VS2013 and C#

 On the left pane, click on Install and enter file name for the SDK, as shown in Fig-4.5.

Fig-4.5: Create new SDK – SDK info

 Click Apply and then OK

Build and Generate OS Runtime Image

To build the OS design project, select BUILD | Build Solution from the VS2013 IDE.

If the build process ends with error, review the build.log and build.err files in the following
directory to identify the causes:

C:\WINCE800\

After the OS design build process is completed, an OS runtime image, NK.bin, is generated
in the following directory:

C:\WINCE800\OSDesigns\MyOSDesign\MyOSDesign\RelDir\86Duino_80B_Release

Build and Generate SDK

From the Solution Explorer window, right mouse click on Compact2013_SDK_86Duino_80B
and select Build to build the SDK, as shown in Fig-4.6.

Fig-4.6: Build the SDK

Part-4: Application Development with VS2013 and C# | 29

After the build process is completed, the SDK file, Compact2013_SDK_86Duino_80B.msi, is
generated in the following directory:

C:\WINCE800\OSDesigns\MyOSDesign\MyOSDesign\SDKs\SDK1\MSI

Install the Compact2013_SDK_86Duino_80B.msi SDK to support application development
exercise in the next section.

Download OS Runtime Image to Target Device

Before getting into application development, we need to download OS runtime image to
the target device, needed to test and debug the application.

With the development PC and target device attached to the same LAN, go through the
following steps to download OS image to the target device:

 Launch the IPAddressDiscovery.exe application on the development PC, from the
following folder:

C:\WINCE800\Platform\86Duino_80B\Misc

 With MyOSDesign project open, select TARGET | Attach Device from VS2013 IDE to
initiate the download process.

 Power on the EduCake.

 As the OS image launches and the IPBroadcastCompact2013.exe excutes on the
EduCake, the IPAddressDiscovery command prompt screen display IP address for the
target device, as shown in Fig-4.7.

Fig-4.7: IPAddressDiscovery showing target device IP address

Note: The IPBroadcastCompact2013.exe application terminates itself after broadcasted 5
messages, with 2 second delay in between.

30 | Part-4: Application Development with VS2013 and C#

Develop Compact 2013 Application in C#

In this section, we will go through the steps to develop the IPBroadcastCompact2013
application in C# and deploy the application to run on the target device for testing and
debugging.

Work through the following steps to create the application:

 Launch a new instance of VS2013 and click on New Project.

 From th left pane on the New Project screen, click on the following node:

\Other Languages\Visual C#\Windows Embedded Compact\Compact2013_SDK_86Duino_80B

 On the center pane, click to select Console Application and enter a name for the
application, IPAddressBroadcast, and as shown in Fig-4.8.

Fig-4.8: New C# application project for Compact 2013

 Click on OK to continue.

 Replace the codes in the Program.cs file with the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net;
using System.Threading;

namespace IPAddressBroadcast
{
 class Program
 {
 static void Main(string[] args)
 {
 for (int i = 0; i < 5; i++)
 {

Part-4: Application Development with VS2013 and C# | 31

 System.Net.Sockets.UdpClient sock =
 new System.Net.Sockets.UdpClient();

 IPEndPoint iep =
 new IPEndPoint(IPAddress.Parse("255.255.255.255"), 15000);

 byte[] data = Encoding.ASCII.GetBytes("86Duino");
 sock.Send(data, data.Length, iep);
 sock.Close();

 Thread.Sleep(2000);

 }
 }
 }
}

 From VS2013 IDE, select BUILD | Build Solution to build the project.

 From the Solution Explorer window, right mouse click on the IPAddressBroadcast
project and select properties to bring up the property page, as shown in Fig-4.9.

Fig-4.9: Application project property page.

 Enter the target device’s IP address.

If the IPAddressDiscovery application is not running on the development machine,
launch it now before the next step.

 From VS2013 IDE, select DEBUG | Start Debugging to deploy the application to the
target device.

As the IPAddressBroadcast application is deployed and run on the target device, the
IPAddressDiscovery command prompt window detect and display IP address from
the target device.

As you can see from the codes above, the program loops 5 times to send UDP
broadcast message with 2 seconds delay in between, and terminate after the 5th
iteration.

32 | Part-4: Application Development with VS2013 and C#

Application Debug

Continue from the previous step, let’s place a break point on the following line of code:

sock.Send(data, data.Length, iep);

Now, select DEBUG | Start Debugging from VS2013 IDE to deploy the application to the
target device.

As the application execute on the target device, it halt on the above line of code, as shown
in Fig-4.10.

Fig-4.10: Application halt at breakpoint

At this point, you can press F11 to step through the code one line at a time and use
debugging tools from VS2013 to view program variable value and operating status.

Next, press F5 for the application to continue. As the application continue to execute, it
halt again after looping back to the same line of code, with the breakpoint.

Remove the breakpoint and press F5 again for the program to continue to run until
completion and terminate.

Summary

Compact 2013 provides an efficient development environment that enables you to develop
managed code application and the facility for you to remotely debug the application, from
Visual Studio IDE, as the codes execute on the target device.

If you have existing managed code application development skills, you can leverage the
existing skills you have to develop application for Compact 2013 devices.

